泰勒泡沫破裂

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Evgenii L. Sharaborin , Oleg A. Rogozin , Aslan R. Kasimov
{"title":"泰勒泡沫破裂","authors":"Evgenii L. Sharaborin ,&nbsp;Oleg A. Rogozin ,&nbsp;Aslan R. Kasimov","doi":"10.1016/j.compfluid.2025.106577","DOIUrl":null,"url":null,"abstract":"<div><div>High-resolution direct numerical simulation is used to study the motion of a Taylor bubble in a cylindrical microtube under conditions that lead to the bubble break-up. It is observed that the initial bubble elongates and deforms such that its front part retains a bullet-like shape while its back part forms a skirt shape. Subsequently, the carrier fluid surrounded by the skirt penetrates into the bubble forming a finger that transitions into a bulb shape. The bulb then increases in size until it touches the near-wall liquid film and as a result splits the bubble into two comparable daughter bubbles. Various dynamical features of this break-up process are explored and described in detail.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"291 ","pages":"Article 106577"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Break-up of the Taylor bubble\",\"authors\":\"Evgenii L. Sharaborin ,&nbsp;Oleg A. Rogozin ,&nbsp;Aslan R. Kasimov\",\"doi\":\"10.1016/j.compfluid.2025.106577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-resolution direct numerical simulation is used to study the motion of a Taylor bubble in a cylindrical microtube under conditions that lead to the bubble break-up. It is observed that the initial bubble elongates and deforms such that its front part retains a bullet-like shape while its back part forms a skirt shape. Subsequently, the carrier fluid surrounded by the skirt penetrates into the bubble forming a finger that transitions into a bulb shape. The bulb then increases in size until it touches the near-wall liquid film and as a result splits the bubble into two comparable daughter bubbles. Various dynamical features of this break-up process are explored and described in detail.</div></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"291 \",\"pages\":\"Article 106577\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793025000374\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025000374","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

采用高分辨率直接数值模拟方法,研究了导致气泡破裂的条件下泰勒泡在圆柱形微管中的运动。观察到初始气泡的伸长和变形使其前部保持子弹状,而后部形成裙形。随后,被裙部包围的载体流体渗透到气泡中,形成一个转变成球状的手指。然后,灯泡的大小增加,直到它接触到近壁的液体膜,结果将气泡分裂成两个类似的子气泡。研究并详细描述了这一分裂过程的各种动力学特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Break-up of the Taylor bubble

Break-up of the Taylor bubble
High-resolution direct numerical simulation is used to study the motion of a Taylor bubble in a cylindrical microtube under conditions that lead to the bubble break-up. It is observed that the initial bubble elongates and deforms such that its front part retains a bullet-like shape while its back part forms a skirt shape. Subsequently, the carrier fluid surrounded by the skirt penetrates into the bubble forming a finger that transitions into a bulb shape. The bulb then increases in size until it touches the near-wall liquid film and as a result splits the bubble into two comparable daughter bubbles. Various dynamical features of this break-up process are explored and described in detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信