印楝叶提取物制备环境用BaO纳米棒及表征

Q1 Social Sciences
Valeria Quintana Mejia , Reynel Cárdenas Hadechini , Adriana Herrera Barros , Zulia Caamaño De Ávila
{"title":"印楝叶提取物制备环境用BaO纳米棒及表征","authors":"Valeria Quintana Mejia ,&nbsp;Reynel Cárdenas Hadechini ,&nbsp;Adriana Herrera Barros ,&nbsp;Zulia Caamaño De Ávila","doi":"10.1016/j.sajce.2025.02.007","DOIUrl":null,"url":null,"abstract":"<div><div>Barium oxide nanorods were synthesized using the coprecipitation method in the presence of Azadirachta indica (neem) leaf extract as a stabilizing and protective agent. The BaO nanorods were characterized using different techniques, such as Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Energy Dispersive X-ray Fluorescence (EDX). TGA revealed that the thermal decomposition of Ba(OH)₂ into BaO occurs at temperatures above 490 °C for the sample obtained without neem. At the same time, BaO nanorods synthesized using the neem aqueous extract exhibited slightly lower thermal decomposition at 412 °C. However, it was found that a Ba(OH)₂ sample containing 12.5 % v/v neem extract, calcined at 350 °C for 15 mins, did not exhibit the presence of the O<img>H bond vibration in the FTIR analysis. The chemical elements Ba and O were confirmed in the neem and non-neem samples via EDX. SEM images showed a uniform flower-like distribution and rod- and sheet-like structures. XRD analysis confirmed the formation of BaO NPs with a tetragonal structure and crystallite sizes at the nanoscale (90, 15.9, and 8.6 nm). The synthesized BaO nanorods demonstrated a high methylene blue removal capacity, especially the 31.25 % v/v sample, which achieved a 48.6 % dye removal, suggesting the potential applications of these nanomaterials to reduce the contamination by organic components in aqueous media. The polyphenols present in neem leaves provided porosity, stabilization, and a reduction in crystallite size to the nanorods, which improved their adsorption and photodegradation capacity for the dye. This demonstrates the advantages of using neem leaf extract over commonly used stabilizers in this type of synthesis.</div></div>","PeriodicalId":21926,"journal":{"name":"South African Journal of Chemical Engineering","volume":"52 ","pages":"Pages 189-199"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of BaO nanorods using azadirachta indica (neem) leaf extract for environmental applications\",\"authors\":\"Valeria Quintana Mejia ,&nbsp;Reynel Cárdenas Hadechini ,&nbsp;Adriana Herrera Barros ,&nbsp;Zulia Caamaño De Ávila\",\"doi\":\"10.1016/j.sajce.2025.02.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Barium oxide nanorods were synthesized using the coprecipitation method in the presence of Azadirachta indica (neem) leaf extract as a stabilizing and protective agent. The BaO nanorods were characterized using different techniques, such as Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Energy Dispersive X-ray Fluorescence (EDX). TGA revealed that the thermal decomposition of Ba(OH)₂ into BaO occurs at temperatures above 490 °C for the sample obtained without neem. At the same time, BaO nanorods synthesized using the neem aqueous extract exhibited slightly lower thermal decomposition at 412 °C. However, it was found that a Ba(OH)₂ sample containing 12.5 % v/v neem extract, calcined at 350 °C for 15 mins, did not exhibit the presence of the O<img>H bond vibration in the FTIR analysis. The chemical elements Ba and O were confirmed in the neem and non-neem samples via EDX. SEM images showed a uniform flower-like distribution and rod- and sheet-like structures. XRD analysis confirmed the formation of BaO NPs with a tetragonal structure and crystallite sizes at the nanoscale (90, 15.9, and 8.6 nm). The synthesized BaO nanorods demonstrated a high methylene blue removal capacity, especially the 31.25 % v/v sample, which achieved a 48.6 % dye removal, suggesting the potential applications of these nanomaterials to reduce the contamination by organic components in aqueous media. The polyphenols present in neem leaves provided porosity, stabilization, and a reduction in crystallite size to the nanorods, which improved their adsorption and photodegradation capacity for the dye. This demonstrates the advantages of using neem leaf extract over commonly used stabilizers in this type of synthesis.</div></div>\",\"PeriodicalId\":21926,\"journal\":{\"name\":\"South African Journal of Chemical Engineering\",\"volume\":\"52 \",\"pages\":\"Pages 189-199\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African Journal of Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1026918525000186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1026918525000186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

以印楝叶提取物为稳定剂和保护剂,采用共沉淀法合成了氧化钡纳米棒。利用热重分析(TGA)、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)、x射线衍射(XRD)和能量色散x射线荧光(EDX)等不同技术对BaO纳米棒进行了表征。热重分析表明,在490℃以上的温度下,不含楝树的样品Ba(OH) 2热分解为BaO。同时,用印楝水提物合成的BaO纳米棒在412℃时的热分解率略低。然而,我们发现含有12.5% v/v楝树提取物的Ba(OH) 2样品,在350°C下煅烧15分钟,在FTIR分析中没有表现出OH键振动的存在。EDX测定了印楝和非印楝样品中的化学元素Ba和O。扫描电镜图像显示出均匀的花状分布和棒状和片状结构。XRD分析证实了BaO NPs具有四方结构,晶粒尺寸为纳米级(90、15.9和8.6 nm)。合成的BaO纳米棒具有较高的亚甲基蓝去除率,特别是在v/v为31.25%的样品中,其染料去除率达到48.6%,表明该纳米材料在减少水介质中有机组分污染方面具有潜在的应用前景。印楝叶中的多酚为纳米棒提供了孔隙性、稳定性和晶体尺寸的减小,从而提高了纳米棒对染料的吸附和光降解能力。这表明,在这种类型的合成中,使用印楝叶提取物比常用的稳定剂有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis and characterization of BaO nanorods using azadirachta indica (neem) leaf extract for environmental applications
Barium oxide nanorods were synthesized using the coprecipitation method in the presence of Azadirachta indica (neem) leaf extract as a stabilizing and protective agent. The BaO nanorods were characterized using different techniques, such as Thermogravimetric Analysis (TGA), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), and Energy Dispersive X-ray Fluorescence (EDX). TGA revealed that the thermal decomposition of Ba(OH)₂ into BaO occurs at temperatures above 490 °C for the sample obtained without neem. At the same time, BaO nanorods synthesized using the neem aqueous extract exhibited slightly lower thermal decomposition at 412 °C. However, it was found that a Ba(OH)₂ sample containing 12.5 % v/v neem extract, calcined at 350 °C for 15 mins, did not exhibit the presence of the OH bond vibration in the FTIR analysis. The chemical elements Ba and O were confirmed in the neem and non-neem samples via EDX. SEM images showed a uniform flower-like distribution and rod- and sheet-like structures. XRD analysis confirmed the formation of BaO NPs with a tetragonal structure and crystallite sizes at the nanoscale (90, 15.9, and 8.6 nm). The synthesized BaO nanorods demonstrated a high methylene blue removal capacity, especially the 31.25 % v/v sample, which achieved a 48.6 % dye removal, suggesting the potential applications of these nanomaterials to reduce the contamination by organic components in aqueous media. The polyphenols present in neem leaves provided porosity, stabilization, and a reduction in crystallite size to the nanorods, which improved their adsorption and photodegradation capacity for the dye. This demonstrates the advantages of using neem leaf extract over commonly used stabilizers in this type of synthesis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
0.00%
发文量
100
审稿时长
33 weeks
期刊介绍: The journal has a particular interest in publishing papers on the unique issues facing chemical engineering taking place in countries that are rich in resources but face specific technical and societal challenges, which require detailed knowledge of local conditions to address. Core topic areas are: Environmental process engineering • treatment and handling of waste and pollutants • the abatement of pollution, environmental process control • cleaner technologies • waste minimization • environmental chemical engineering • water treatment Reaction Engineering • modelling and simulation of reactors • transport phenomena within reacting systems • fluidization technology • reactor design Separation technologies • classic separations • novel separations Process and materials synthesis • novel synthesis of materials or processes, including but not limited to nanotechnology, ceramics, etc. Metallurgical process engineering and coal technology • novel developments related to the minerals beneficiation industry • coal technology Chemical engineering education • guides to good practice • novel approaches to learning • education beyond university.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信