纳米带对CO, F2和NO2的吸附:光电性能和传感应用

IF 2 3区 化学 Q4 CHEMISTRY, PHYSICAL
Nguyen Thanh Tung , Tran Cong Phong , Hoang Van Ngoc
{"title":"纳米带对CO, F2和NO2的吸附:光电性能和传感应用","authors":"Nguyen Thanh Tung ,&nbsp;Tran Cong Phong ,&nbsp;Hoang Van Ngoc","doi":"10.1016/j.chemphys.2025.112668","DOIUrl":null,"url":null,"abstract":"<div><div>The structural and optoelectronic properties of pristine stanene nanoribbons and their modifications upon adsorption of CO, F<sub>2</sub>, and NO<sub>2</sub> gas molecules were systematically investigated using density functional theory. Pristine SnNRs were identified as semiconductors with an intrinsic band gap of approximately 0.308 eV. Notably, the adsorption of F<sub>2</sub> and NO<sub>2</sub> induced a semiconductor-to-metal transition, whereas CO-adsorbed SnNRs retained semiconducting behavior with a band gap of 0.288 eV. Magnetic analysis revealed a transition from a nonmagnetic ground state in pristine SnNRs to a magnetic state upon gas adsorption, with magnetic moments of 2.624 μ<sub>B</sub>, and 1.099 μ<sub>B</sub> for F<sub>2</sub> and NO<sub>2</sub>, respectively. The underlying adsorption mechanisms were elucidated through detailed investigations of multi-orbital hybridization, charge density redistribution, and optical properties, including the dielectric function, absorption coefficient, and joint density of states. These findings underscore the potential of SnNRs for nanoscale optoelectronic applications and as gas sensors for CO, F<sub>2</sub>, and NO<sub>2</sub>.</div></div>","PeriodicalId":272,"journal":{"name":"Chemical Physics","volume":"594 ","pages":"Article 112668"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption of CO, F2, and NO2 on stanene nanoribbons: Optoelectronic properties and sensing applications\",\"authors\":\"Nguyen Thanh Tung ,&nbsp;Tran Cong Phong ,&nbsp;Hoang Van Ngoc\",\"doi\":\"10.1016/j.chemphys.2025.112668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The structural and optoelectronic properties of pristine stanene nanoribbons and their modifications upon adsorption of CO, F<sub>2</sub>, and NO<sub>2</sub> gas molecules were systematically investigated using density functional theory. Pristine SnNRs were identified as semiconductors with an intrinsic band gap of approximately 0.308 eV. Notably, the adsorption of F<sub>2</sub> and NO<sub>2</sub> induced a semiconductor-to-metal transition, whereas CO-adsorbed SnNRs retained semiconducting behavior with a band gap of 0.288 eV. Magnetic analysis revealed a transition from a nonmagnetic ground state in pristine SnNRs to a magnetic state upon gas adsorption, with magnetic moments of 2.624 μ<sub>B</sub>, and 1.099 μ<sub>B</sub> for F<sub>2</sub> and NO<sub>2</sub>, respectively. The underlying adsorption mechanisms were elucidated through detailed investigations of multi-orbital hybridization, charge density redistribution, and optical properties, including the dielectric function, absorption coefficient, and joint density of states. These findings underscore the potential of SnNRs for nanoscale optoelectronic applications and as gas sensors for CO, F<sub>2</sub>, and NO<sub>2</sub>.</div></div>\",\"PeriodicalId\":272,\"journal\":{\"name\":\"Chemical Physics\",\"volume\":\"594 \",\"pages\":\"Article 112668\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301010425000692\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301010425000692","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用密度泛函理论系统地研究了原始stanene纳米带的结构和光电性能及其对CO、F2和NO2气体分子的吸附改性。原始snnr被确定为半导体,其固有带隙约为0.308 eV。值得注意的是,F2和NO2的吸附诱导了半导体到金属的转变,而co吸附的SnNRs保留了半导体行为,带隙为0.288 eV。磁性分析表明,在气体吸附过程中,原始snnr从非磁性基态转变为磁性基态,F2和NO2的磁矩分别为2.624 μB和1.099 μB。通过详细研究多轨道杂化、电荷密度重分布和光学性质,包括介电函数、吸收系数和态的接合密度,阐明了潜在的吸附机制。这些发现强调了snnr在纳米级光电应用以及作为CO、F2和NO2气体传感器方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adsorption of CO, F2, and NO2 on stanene nanoribbons: Optoelectronic properties and sensing applications
The structural and optoelectronic properties of pristine stanene nanoribbons and their modifications upon adsorption of CO, F2, and NO2 gas molecules were systematically investigated using density functional theory. Pristine SnNRs were identified as semiconductors with an intrinsic band gap of approximately 0.308 eV. Notably, the adsorption of F2 and NO2 induced a semiconductor-to-metal transition, whereas CO-adsorbed SnNRs retained semiconducting behavior with a band gap of 0.288 eV. Magnetic analysis revealed a transition from a nonmagnetic ground state in pristine SnNRs to a magnetic state upon gas adsorption, with magnetic moments of 2.624 μB, and 1.099 μB for F2 and NO2, respectively. The underlying adsorption mechanisms were elucidated through detailed investigations of multi-orbital hybridization, charge density redistribution, and optical properties, including the dielectric function, absorption coefficient, and joint density of states. These findings underscore the potential of SnNRs for nanoscale optoelectronic applications and as gas sensors for CO, F2, and NO2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics
Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
4.30%
发文量
278
审稿时长
39 days
期刊介绍: Chemical Physics publishes experimental and theoretical papers on all aspects of chemical physics. In this journal, experiments are related to theory, and in turn theoretical papers are related to present or future experiments. Subjects covered include: spectroscopy and molecular structure, interacting systems, relaxation phenomena, biological systems, materials, fundamental problems in molecular reactivity, molecular quantum theory and statistical mechanics. Computational chemistry studies of routine character are not appropriate for this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信