利用压电异质结在水中进行压电光催化流动合成过氧化氢

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Meiyu Zhang, Yushan Jiang, Fang Chen, Yalin Zhang, Zhen Li, Fumei Shi, Bin Liu, Xianqiang Huang* and Yifa Chen*, 
{"title":"利用压电异质结在水中进行压电光催化流动合成过氧化氢","authors":"Meiyu Zhang,&nbsp;Yushan Jiang,&nbsp;Fang Chen,&nbsp;Yalin Zhang,&nbsp;Zhen Li,&nbsp;Fumei Shi,&nbsp;Bin Liu,&nbsp;Xianqiang Huang* and Yifa Chen*,&nbsp;","doi":"10.1021/acssuschemeng.4c1001710.1021/acssuschemeng.4c10017","DOIUrl":null,"url":null,"abstract":"<p >The exploration of photocatalysts that can combine external energy in photocatalytic H<sub>2</sub>O<sub>2</sub> production to boost production efficiency is highly desirable for the sustainable utilization of solar energy. Herein, a piezo-photocatalytic flowing synthesis strategy has been proposed for the overall reaction production of H<sub>2</sub>O<sub>2</sub> using a piezoelectric heterojunction (BiOCl/Zn-TCPP). The thus-generated piezoelectric heterojunction with the integration of visible-light response, prominent piezoelectric properties, and favorable redox ability can efficiently improve the separation and transport efficiency of photogenerated carriers under the synergistic effect of ultrasound and light. Remarkably, the piezo-photocatalytic H<sub>2</sub>O<sub>2</sub> production rate over BiOCl/Zn-TCPP is 202,200 μM h<sup>–1</sup> g<sup>–1</sup>, achieving a 44-fold increase in H<sub>2</sub>O<sub>2</sub> activity of BiOCl/Zn-TCPP without piezoelectric potential, even superior to most semiconductor-based catalysts in photocatalysis. Notably, in a continuous flowing setup, it achieves an H<sub>2</sub>O<sub>2</sub> concentration of 1.38 wt % after 10 h with a production rate of 407 μM h<sup>–1</sup> under sunlight and air, which can be successfully applied as an antibacterial agent and readily stored as a solid phase (i.e., Na<sub>2</sub>CO<sub>3</sub>·1.5 H<sub>2</sub>O<sub>2</sub>) for easy storage or transportation. This work might provide new insights required for the development of external energy-assisted photocatalytic systems in an efficient H<sub>2</sub>O<sub>2</sub> flowing synthesis and applications.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"13 7","pages":"2966–2977 2966–2977"},"PeriodicalIF":7.3000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piezo-Photocatalytic Flowing Synthesis of Hydrogen Peroxide in Water Using a Piezoelectric Heterojunction\",\"authors\":\"Meiyu Zhang,&nbsp;Yushan Jiang,&nbsp;Fang Chen,&nbsp;Yalin Zhang,&nbsp;Zhen Li,&nbsp;Fumei Shi,&nbsp;Bin Liu,&nbsp;Xianqiang Huang* and Yifa Chen*,&nbsp;\",\"doi\":\"10.1021/acssuschemeng.4c1001710.1021/acssuschemeng.4c10017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The exploration of photocatalysts that can combine external energy in photocatalytic H<sub>2</sub>O<sub>2</sub> production to boost production efficiency is highly desirable for the sustainable utilization of solar energy. Herein, a piezo-photocatalytic flowing synthesis strategy has been proposed for the overall reaction production of H<sub>2</sub>O<sub>2</sub> using a piezoelectric heterojunction (BiOCl/Zn-TCPP). The thus-generated piezoelectric heterojunction with the integration of visible-light response, prominent piezoelectric properties, and favorable redox ability can efficiently improve the separation and transport efficiency of photogenerated carriers under the synergistic effect of ultrasound and light. Remarkably, the piezo-photocatalytic H<sub>2</sub>O<sub>2</sub> production rate over BiOCl/Zn-TCPP is 202,200 μM h<sup>–1</sup> g<sup>–1</sup>, achieving a 44-fold increase in H<sub>2</sub>O<sub>2</sub> activity of BiOCl/Zn-TCPP without piezoelectric potential, even superior to most semiconductor-based catalysts in photocatalysis. Notably, in a continuous flowing setup, it achieves an H<sub>2</sub>O<sub>2</sub> concentration of 1.38 wt % after 10 h with a production rate of 407 μM h<sup>–1</sup> under sunlight and air, which can be successfully applied as an antibacterial agent and readily stored as a solid phase (i.e., Na<sub>2</sub>CO<sub>3</sub>·1.5 H<sub>2</sub>O<sub>2</sub>) for easy storage or transportation. This work might provide new insights required for the development of external energy-assisted photocatalytic systems in an efficient H<sub>2</sub>O<sub>2</sub> flowing synthesis and applications.</p>\",\"PeriodicalId\":25,\"journal\":{\"name\":\"ACS Sustainable Chemistry & Engineering\",\"volume\":\"13 7\",\"pages\":\"2966–2977 2966–2977\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sustainable Chemistry & Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acssuschemeng.4c10017\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.4c10017","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

探索能够结合外界能量光催化生产H2O2以提高生产效率的光催化剂是太阳能可持续利用的迫切需要。本文提出了一种压电光催化流动合成策略,利用压电异质结(BiOCl/Zn-TCPP)进行H2O2的整体反应生产。由此产生的压电异质结集可见光响应、突出的压电性能和良好的氧化还原能力于一体,可以在超声和光的协同作用下有效地提高光生载流子的分离和输运效率。值得注意的是,BiOCl/Zn-TCPP的压电光催化H2O2产率为202,200 μM - 1 g-1,在没有压电电位的情况下,BiOCl/Zn-TCPP的H2O2活性提高了44倍,在光催化方面甚至优于大多数半导体基催化剂。值得注意的是,在连续流动装置中,在阳光和空气下,10h后H2O2浓度达到1.38 wt %,产率为407 μM h - 1,可以成功地用作抗菌剂,并且易于作为固相(即Na2CO3·1.5 H2O2)储存,便于储存或运输。这项工作可能为开发高效H2O2流动合成的外部能量辅助光催化系统及其应用提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Piezo-Photocatalytic Flowing Synthesis of Hydrogen Peroxide in Water Using a Piezoelectric Heterojunction

Piezo-Photocatalytic Flowing Synthesis of Hydrogen Peroxide in Water Using a Piezoelectric Heterojunction

The exploration of photocatalysts that can combine external energy in photocatalytic H2O2 production to boost production efficiency is highly desirable for the sustainable utilization of solar energy. Herein, a piezo-photocatalytic flowing synthesis strategy has been proposed for the overall reaction production of H2O2 using a piezoelectric heterojunction (BiOCl/Zn-TCPP). The thus-generated piezoelectric heterojunction with the integration of visible-light response, prominent piezoelectric properties, and favorable redox ability can efficiently improve the separation and transport efficiency of photogenerated carriers under the synergistic effect of ultrasound and light. Remarkably, the piezo-photocatalytic H2O2 production rate over BiOCl/Zn-TCPP is 202,200 μM h–1 g–1, achieving a 44-fold increase in H2O2 activity of BiOCl/Zn-TCPP without piezoelectric potential, even superior to most semiconductor-based catalysts in photocatalysis. Notably, in a continuous flowing setup, it achieves an H2O2 concentration of 1.38 wt % after 10 h with a production rate of 407 μM h–1 under sunlight and air, which can be successfully applied as an antibacterial agent and readily stored as a solid phase (i.e., Na2CO3·1.5 H2O2) for easy storage or transportation. This work might provide new insights required for the development of external energy-assisted photocatalytic systems in an efficient H2O2 flowing synthesis and applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信