{"title":"离子共价交联对磺化聚醚醚酮膜的质子电导率和尺寸稳定性的影响","authors":"Xueyan Lv, Luyang Ding, Xinji Yu, Jihai Duan, Weiwen Wang, Shuguo Qu","doi":"10.1021/acs.iecr.4c04128","DOIUrl":null,"url":null,"abstract":"To enhance proton transfer within the proton exchange membrane, a combination of ionic and covalent cross-linking strategies was utilized to fabricate sulfonated poly(ether ether ketone) (SPEEK) composite membranes. Side chains of SPEEK were grafted, and then, the ionic cross-linking intermediates were mixed with ionic liquid (IL) [AMIM][Cl] and graphene oxide (GO). Covalent cross-linking was subsequently achieved through the Menshutkin reaction. By adjusting the proportions of IL and GO, SPEEK ionic–covalent cross-linking composite membranes (C-SPEEK/IL/GO) with enhanced performance were synthesized. The establishment of the ionic cross-linking network and the presence of covalent cross-linking within the composite membranes were confirmed using Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), respectively. The intricate microscopic network structure within the C-SPEEK/IL/GO facilitates rapid proton transport. Consequently, the proton conductivity of C-SPEEK/IL/GO-1% attained a remarkable 47.43 mS·cm<sup>–1</sup> at 120 °C. The ionic–covalent cross-linking network within the C-SPEEK/IL/GO combined membrane endows it with a dense architecture, which constricts the hydrophilic channels, thereby enhancing the membrane’s dimensional stability. Additionally, the thermal stability of the C-SPEEK/IL/GO composite membrane has been significantly enhanced compared to that of the pristine SPEEK.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"18 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balance of the Proton Conductivity and Dimensional Stability of Sulfonated Poly(ether ether ketone) Membranes through Ionic–Covalent Cross-Linking\",\"authors\":\"Xueyan Lv, Luyang Ding, Xinji Yu, Jihai Duan, Weiwen Wang, Shuguo Qu\",\"doi\":\"10.1021/acs.iecr.4c04128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To enhance proton transfer within the proton exchange membrane, a combination of ionic and covalent cross-linking strategies was utilized to fabricate sulfonated poly(ether ether ketone) (SPEEK) composite membranes. Side chains of SPEEK were grafted, and then, the ionic cross-linking intermediates were mixed with ionic liquid (IL) [AMIM][Cl] and graphene oxide (GO). Covalent cross-linking was subsequently achieved through the Menshutkin reaction. By adjusting the proportions of IL and GO, SPEEK ionic–covalent cross-linking composite membranes (C-SPEEK/IL/GO) with enhanced performance were synthesized. The establishment of the ionic cross-linking network and the presence of covalent cross-linking within the composite membranes were confirmed using Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), respectively. The intricate microscopic network structure within the C-SPEEK/IL/GO facilitates rapid proton transport. Consequently, the proton conductivity of C-SPEEK/IL/GO-1% attained a remarkable 47.43 mS·cm<sup>–1</sup> at 120 °C. The ionic–covalent cross-linking network within the C-SPEEK/IL/GO combined membrane endows it with a dense architecture, which constricts the hydrophilic channels, thereby enhancing the membrane’s dimensional stability. Additionally, the thermal stability of the C-SPEEK/IL/GO composite membrane has been significantly enhanced compared to that of the pristine SPEEK.\",\"PeriodicalId\":39,\"journal\":{\"name\":\"Industrial & Engineering Chemistry Research\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial & Engineering Chemistry Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.iecr.4c04128\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c04128","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Balance of the Proton Conductivity and Dimensional Stability of Sulfonated Poly(ether ether ketone) Membranes through Ionic–Covalent Cross-Linking
To enhance proton transfer within the proton exchange membrane, a combination of ionic and covalent cross-linking strategies was utilized to fabricate sulfonated poly(ether ether ketone) (SPEEK) composite membranes. Side chains of SPEEK were grafted, and then, the ionic cross-linking intermediates were mixed with ionic liquid (IL) [AMIM][Cl] and graphene oxide (GO). Covalent cross-linking was subsequently achieved through the Menshutkin reaction. By adjusting the proportions of IL and GO, SPEEK ionic–covalent cross-linking composite membranes (C-SPEEK/IL/GO) with enhanced performance were synthesized. The establishment of the ionic cross-linking network and the presence of covalent cross-linking within the composite membranes were confirmed using Fourier Transform Infrared Spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), respectively. The intricate microscopic network structure within the C-SPEEK/IL/GO facilitates rapid proton transport. Consequently, the proton conductivity of C-SPEEK/IL/GO-1% attained a remarkable 47.43 mS·cm–1 at 120 °C. The ionic–covalent cross-linking network within the C-SPEEK/IL/GO combined membrane endows it with a dense architecture, which constricts the hydrophilic channels, thereby enhancing the membrane’s dimensional stability. Additionally, the thermal stability of the C-SPEEK/IL/GO composite membrane has been significantly enhanced compared to that of the pristine SPEEK.
期刊介绍:
ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.