Nadezhda P Shlyk, Ekaterina A Yurchenko, Elena V Leshchenko, Ekaterina A Chingizova, Artur R Chingizov, Viktoria E Chausova, Natalya N Kirichuk, Yuliya V Khudyakova, Mikhail V Pivkin, Alexandr S Antonov, Roman S Popov, Marina P Isaeva, Anton N Yurchenko
{"title":"The secondary metabolites of the alga-derived fungus Aspergillus niveoglaucus КММ 4176 and their antimicrobial and antibiofilm activities.","authors":"Nadezhda P Shlyk, Ekaterina A Yurchenko, Elena V Leshchenko, Ekaterina A Chingizova, Artur R Chingizov, Viktoria E Chausova, Natalya N Kirichuk, Yuliya V Khudyakova, Mikhail V Pivkin, Alexandr S Antonov, Roman S Popov, Marina P Isaeva, Anton N Yurchenko","doi":"10.1038/s41429-025-00811-0","DOIUrl":null,"url":null,"abstract":"<p><p>Marine alga-derived fungal strain КММ 4176 was identified as Aspergillus niveoglaucus based on ITS region BenA, CaM and RPB2 gene sequence analysis. The anthraquinone derivatives emodin anthrone (1) and 4-hydroxyemodin anthrone (2), chromone derivative aloesone (3), and indole diketopiperazine alkaloid neoechinulin B (4) were isolated from the ethyl acetate extract of this fungus. In addition, UPLC MS data analysis of the KMM 4176 extract showed the presence of 17 echinulin-family alkaloids, as well as their biogenetic precursor cyclo(L-alanyl-L-tryptophyl) and a number of polyketide compounds. Emodin anthrone and 4-hydroxyemodin anthrone were found as inhibitors of biofilm formation by Staphylococcus aureus with half-maximal inhibitory concentrations (IC<sub>50</sub>) of 5.5 µM and 23.7 µM, respectively. Moreover, emodin anthrone (1) and 4-hydroxyemodin anthrone (2) inhibited staphylococcal sortase A activity with IC<sub>50</sub> of 9.2 µM and 37.6 µM, respectively. Aloesone (3) also inhibited S. aureus biofilm formation but was less active. The first data on neoechinulin B (4) antibiofilm activity and sortase A inhibition were obtained. The positive effects of the isolated compounds on the growth of HaCaT keratinocytes infected with S. aureus were also observed.</p>","PeriodicalId":54884,"journal":{"name":"Journal of Antibiotics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Antibiotics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41429-025-00811-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
The secondary metabolites of the alga-derived fungus Aspergillus niveoglaucus КММ 4176 and their antimicrobial and antibiofilm activities.
Marine alga-derived fungal strain КММ 4176 was identified as Aspergillus niveoglaucus based on ITS region BenA, CaM and RPB2 gene sequence analysis. The anthraquinone derivatives emodin anthrone (1) and 4-hydroxyemodin anthrone (2), chromone derivative aloesone (3), and indole diketopiperazine alkaloid neoechinulin B (4) were isolated from the ethyl acetate extract of this fungus. In addition, UPLC MS data analysis of the KMM 4176 extract showed the presence of 17 echinulin-family alkaloids, as well as their biogenetic precursor cyclo(L-alanyl-L-tryptophyl) and a number of polyketide compounds. Emodin anthrone and 4-hydroxyemodin anthrone were found as inhibitors of biofilm formation by Staphylococcus aureus with half-maximal inhibitory concentrations (IC50) of 5.5 µM and 23.7 µM, respectively. Moreover, emodin anthrone (1) and 4-hydroxyemodin anthrone (2) inhibited staphylococcal sortase A activity with IC50 of 9.2 µM and 37.6 µM, respectively. Aloesone (3) also inhibited S. aureus biofilm formation but was less active. The first data on neoechinulin B (4) antibiofilm activity and sortase A inhibition were obtained. The positive effects of the isolated compounds on the growth of HaCaT keratinocytes infected with S. aureus were also observed.
期刊介绍:
The Journal of Antibiotics seeks to promote research on antibiotics and related types of biologically active substances and publishes Articles, Review Articles, Brief Communication, Correspondence and other specially commissioned reports. The Journal of Antibiotics accepts papers on biochemical, chemical, microbiological and pharmacological studies. However, studies regarding human therapy do not fall under the journal’s scope. Contributions regarding recently discovered antibiotics and biologically active microbial products are particularly encouraged. Topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Discovery of new antibiotics and related types of biologically active substances
Production, isolation, characterization, structural elucidation, chemical synthesis and derivatization, biological activities, mechanisms of action, and structure-activity relationships of antibiotics and related types of biologically active substances
Biosynthesis, bioconversion, taxonomy and genetic studies on producing microorganisms, as well as improvement of production of antibiotics and related types of biologically active substances
Novel physical, chemical, biochemical, microbiological or pharmacological methods for detection, assay, determination, structural elucidation and evaluation of antibiotics and related types of biologically active substances
Newly found properties, mechanisms of action and resistance-development of antibiotics and related types of biologically active substances.