以波状为中心的胶原软组织损伤模型。

IF 9.6 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Jia Lu , Xuehuan He , Ferdinando Auricchio
{"title":"以波状为中心的胶原软组织损伤模型。","authors":"Jia Lu ,&nbsp;Xuehuan He ,&nbsp;Ferdinando Auricchio","doi":"10.1016/j.actbio.2025.01.031","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents a damage model for collagenous tissue under monotonic loading. Given that the true stretch of collagen fibers is not uniform and is regulated by fiber waviness, we postulate that damage commences from more stretched (i.e. straighter) fibers and progresses to less stretched (i.e. wavier) ones. The complicated nonlinear response is regarded as the outcome of two competing mechanisms: the recruitment of wavy intact fibers and the loss of taut functioning fibers. The progression of damage is modeled by an evolving damage front in the waviness domain. A power law is proposed for the evolution of damage front. The model was fitted to four groups of published uniaxial and biaxial tests data of vascular tissues. Spot-on fits were observed in all groups.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"195 ","pages":"Pages 134-143"},"PeriodicalIF":9.6000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A waviness-centered damage model for collagenous soft tissues\",\"authors\":\"Jia Lu ,&nbsp;Xuehuan He ,&nbsp;Ferdinando Auricchio\",\"doi\":\"10.1016/j.actbio.2025.01.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article presents a damage model for collagenous tissue under monotonic loading. Given that the true stretch of collagen fibers is not uniform and is regulated by fiber waviness, we postulate that damage commences from more stretched (i.e. straighter) fibers and progresses to less stretched (i.e. wavier) ones. The complicated nonlinear response is regarded as the outcome of two competing mechanisms: the recruitment of wavy intact fibers and the loss of taut functioning fibers. The progression of damage is modeled by an evolving damage front in the waviness domain. A power law is proposed for the evolution of damage front. The model was fitted to four groups of published uniaxial and biaxial tests data of vascular tissues. Spot-on fits were observed in all groups.</div></div>\",\"PeriodicalId\":237,\"journal\":{\"name\":\"Acta Biomaterialia\",\"volume\":\"195 \",\"pages\":\"Pages 134-143\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biomaterialia\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S174270612500039X\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S174270612500039X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了胶原组织在单调载荷作用下的损伤模型。鉴于胶原纤维的真正拉伸是不均匀的,并受纤维波浪形的调节,我们假设损伤开始于拉伸更大(即更直)的纤维,并向拉伸较小(即波浪形)的纤维发展。复杂的非线性响应被认为是两种竞争机制的结果:波状完整纤维的招募和紧拉功能纤维的损失。损伤的过程是由波浪域中的一个演化的损伤锋来模拟的。提出了损伤锋演化的幂律。该模型与四组已发表的血管组织单轴和双轴试验数据拟合。各组均观察到斑点拟合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A waviness-centered damage model for collagenous soft tissues

A waviness-centered damage model for collagenous soft tissues
This article presents a damage model for collagenous tissue under monotonic loading. Given that the true stretch of collagen fibers is not uniform and is regulated by fiber waviness, we postulate that damage commences from more stretched (i.e. straighter) fibers and progresses to less stretched (i.e. wavier) ones. The complicated nonlinear response is regarded as the outcome of two competing mechanisms: the recruitment of wavy intact fibers and the loss of taut functioning fibers. The progression of damage is modeled by an evolving damage front in the waviness domain. A power law is proposed for the evolution of damage front. The model was fitted to four groups of published uniaxial and biaxial tests data of vascular tissues. Spot-on fits were observed in all groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Biomaterialia
Acta Biomaterialia 工程技术-材料科学:生物材料
CiteScore
16.80
自引率
3.10%
发文量
776
审稿时长
30 days
期刊介绍: Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信