Yujie Wang , Qianru Zhou , Le Lu , Jianhua Xu , Gang Yang , Xuan Sun , Xue Bao , Lina Kang , Pin Lv , Renyuan Liu , Biao Xu , Qi Yang , Dan Mu , Bing Zhang
{"title":"结合氧气输送和生成,实现动脉粥样硬化的靶向治疗。","authors":"Yujie Wang , Qianru Zhou , Le Lu , Jianhua Xu , Gang Yang , Xuan Sun , Xue Bao , Lina Kang , Pin Lv , Renyuan Liu , Biao Xu , Qi Yang , Dan Mu , Bing Zhang","doi":"10.1016/j.jconrel.2025.02.053","DOIUrl":null,"url":null,"abstract":"<div><div>Hypoxia plays an important role in the progression of atherosclerosis. However, ameliorating hypoxia at atherosclerotic lesions remains a great challenge. To achieve targeted oxygen delivery to atherosclerotic plaques, Lipid 5-doped, platelet membrane-encapsulated magnetic mesoporous organosilicon nanoparticles loaded with perfluoro-15-crown ether (PFCE) (FMMON@PL) were prepared. PFCE worked as an oxygen carrier, while iron oxide nanoparticles (IONPs) acted as nanozymes with catalase-like activity to facilitate oxygen generation. To enhance plaque targeting, platelet membranes were coated onto mesoporous organosilicon nanoparticles containing PFCE and IONPs. Lipid 5 containing a tertiary amine was doped into the platelet membranes for lysosomal escape. Our results demonstrated that FMMON@PL specifically targeted macrophages in atherosclerotic plaques. FMMON@PL significantly reduced HIF-1α expression, ameliorated oxidative stress, inhibited foam cell formation, and reduced M1 macrophage polarization. In conclusion, FMMON@PL successfully achieved oxygen delivery within plaques and inhibited plaque progression, demonstrating the feasibility of hypoxia alleviation for the treatment of atherosclerosis.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"380 ","pages":"Pages 1017-1030"},"PeriodicalIF":10.5000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining oxygen delivery and generation for targeted atherosclerosis therapy\",\"authors\":\"Yujie Wang , Qianru Zhou , Le Lu , Jianhua Xu , Gang Yang , Xuan Sun , Xue Bao , Lina Kang , Pin Lv , Renyuan Liu , Biao Xu , Qi Yang , Dan Mu , Bing Zhang\",\"doi\":\"10.1016/j.jconrel.2025.02.053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hypoxia plays an important role in the progression of atherosclerosis. However, ameliorating hypoxia at atherosclerotic lesions remains a great challenge. To achieve targeted oxygen delivery to atherosclerotic plaques, Lipid 5-doped, platelet membrane-encapsulated magnetic mesoporous organosilicon nanoparticles loaded with perfluoro-15-crown ether (PFCE) (FMMON@PL) were prepared. PFCE worked as an oxygen carrier, while iron oxide nanoparticles (IONPs) acted as nanozymes with catalase-like activity to facilitate oxygen generation. To enhance plaque targeting, platelet membranes were coated onto mesoporous organosilicon nanoparticles containing PFCE and IONPs. Lipid 5 containing a tertiary amine was doped into the platelet membranes for lysosomal escape. Our results demonstrated that FMMON@PL specifically targeted macrophages in atherosclerotic plaques. FMMON@PL significantly reduced HIF-1α expression, ameliorated oxidative stress, inhibited foam cell formation, and reduced M1 macrophage polarization. In conclusion, FMMON@PL successfully achieved oxygen delivery within plaques and inhibited plaque progression, demonstrating the feasibility of hypoxia alleviation for the treatment of atherosclerosis.</div></div>\",\"PeriodicalId\":15450,\"journal\":{\"name\":\"Journal of Controlled Release\",\"volume\":\"380 \",\"pages\":\"Pages 1017-1030\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Controlled Release\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168365925001658\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365925001658","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Combining oxygen delivery and generation for targeted atherosclerosis therapy
Hypoxia plays an important role in the progression of atherosclerosis. However, ameliorating hypoxia at atherosclerotic lesions remains a great challenge. To achieve targeted oxygen delivery to atherosclerotic plaques, Lipid 5-doped, platelet membrane-encapsulated magnetic mesoporous organosilicon nanoparticles loaded with perfluoro-15-crown ether (PFCE) (FMMON@PL) were prepared. PFCE worked as an oxygen carrier, while iron oxide nanoparticles (IONPs) acted as nanozymes with catalase-like activity to facilitate oxygen generation. To enhance plaque targeting, platelet membranes were coated onto mesoporous organosilicon nanoparticles containing PFCE and IONPs. Lipid 5 containing a tertiary amine was doped into the platelet membranes for lysosomal escape. Our results demonstrated that FMMON@PL specifically targeted macrophages in atherosclerotic plaques. FMMON@PL significantly reduced HIF-1α expression, ameliorated oxidative stress, inhibited foam cell formation, and reduced M1 macrophage polarization. In conclusion, FMMON@PL successfully achieved oxygen delivery within plaques and inhibited plaque progression, demonstrating the feasibility of hypoxia alleviation for the treatment of atherosclerosis.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.