{"title":"分子印迹聚合物固相萃取女贞子中齐墩果酸。","authors":"Jianling Xu, Wenna Wang, Yixin Chen, Xiaotian Xu, Ao Duan, Yongyan Zhu, Quanhong Zhu","doi":"10.1093/chromsci/bmaf010","DOIUrl":null,"url":null,"abstract":"<p><p>A molecularly imprinted polymer (MIP) was synthesized for the selective extraction of oleanolic acid (OA), employing OA as the template molecule, acrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross-linking agent, azobisisobutyronitrile as the initiator, and chloroform as the porogenic solvent. The characterization of the obtained MIPs was evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller (BET) analysis and X-ray photoelectron spectroscopy. The MIPs reached adsorption equilibrium within 2 hours to OA, with high adsorption capacity of 124.68 mg/g. Subsequently, these MIPs were packed in empty solid-phase extraction (SPE) cartridge to enrichment OA from Ligustrum lucidum fruit extract. The parameters of SPE were optimized as follows: loading 0.5 ml of a 1.0 mg/ml OA reference solution, washing with 0.5 ml of toluene, and eluting with 4 ml of methanol. Under these conditions, the enrichment rate of OA from L. lucidum extract reached 76.0%. Additionally, an high-performance liquid chromatography method for determining OA content was validated. This study provides an effective approach for the separation and enrichment of OA from complex matrices and also provides practical feasibility for the separation and enrichment of other triterpenoids.</p>","PeriodicalId":15430,"journal":{"name":"Journal of chromatographic science","volume":"63 3","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molecularly imprinted polymer for solid-phase extraction of oleanolic acid from Ligustrum lucidum fruit.\",\"authors\":\"Jianling Xu, Wenna Wang, Yixin Chen, Xiaotian Xu, Ao Duan, Yongyan Zhu, Quanhong Zhu\",\"doi\":\"10.1093/chromsci/bmaf010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A molecularly imprinted polymer (MIP) was synthesized for the selective extraction of oleanolic acid (OA), employing OA as the template molecule, acrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross-linking agent, azobisisobutyronitrile as the initiator, and chloroform as the porogenic solvent. The characterization of the obtained MIPs was evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller (BET) analysis and X-ray photoelectron spectroscopy. The MIPs reached adsorption equilibrium within 2 hours to OA, with high adsorption capacity of 124.68 mg/g. Subsequently, these MIPs were packed in empty solid-phase extraction (SPE) cartridge to enrichment OA from Ligustrum lucidum fruit extract. The parameters of SPE were optimized as follows: loading 0.5 ml of a 1.0 mg/ml OA reference solution, washing with 0.5 ml of toluene, and eluting with 4 ml of methanol. Under these conditions, the enrichment rate of OA from L. lucidum extract reached 76.0%. Additionally, an high-performance liquid chromatography method for determining OA content was validated. This study provides an effective approach for the separation and enrichment of OA from complex matrices and also provides practical feasibility for the separation and enrichment of other triterpenoids.</p>\",\"PeriodicalId\":15430,\"journal\":{\"name\":\"Journal of chromatographic science\",\"volume\":\"63 3\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of chromatographic science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1093/chromsci/bmaf010\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of chromatographic science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/chromsci/bmaf010","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Molecularly imprinted polymer for solid-phase extraction of oleanolic acid from Ligustrum lucidum fruit.
A molecularly imprinted polymer (MIP) was synthesized for the selective extraction of oleanolic acid (OA), employing OA as the template molecule, acrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross-linking agent, azobisisobutyronitrile as the initiator, and chloroform as the porogenic solvent. The characterization of the obtained MIPs was evaluated by scanning electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller (BET) analysis and X-ray photoelectron spectroscopy. The MIPs reached adsorption equilibrium within 2 hours to OA, with high adsorption capacity of 124.68 mg/g. Subsequently, these MIPs were packed in empty solid-phase extraction (SPE) cartridge to enrichment OA from Ligustrum lucidum fruit extract. The parameters of SPE were optimized as follows: loading 0.5 ml of a 1.0 mg/ml OA reference solution, washing with 0.5 ml of toluene, and eluting with 4 ml of methanol. Under these conditions, the enrichment rate of OA from L. lucidum extract reached 76.0%. Additionally, an high-performance liquid chromatography method for determining OA content was validated. This study provides an effective approach for the separation and enrichment of OA from complex matrices and also provides practical feasibility for the separation and enrichment of other triterpenoids.
期刊介绍:
The Journal of Chromatographic Science is devoted to the dissemination of information concerning all methods of chromatographic analysis. The standard manuscript is a description of recent original research that covers any or all phases of a specific separation problem, principle, or method. Manuscripts which have a high degree of novelty and fundamental significance to the field of separation science are particularly encouraged. It is expected the authors will clearly state in the Introduction how their method compares in some markedly new and improved way to previous published related methods. Analytical performance characteristics of new methods including sensitivity, tested limits of detection or quantification, accuracy, precision, and specificity should be provided. Manuscripts which describe a straightforward extension of a known analytical method or an application to a previously analyzed and/or uncomplicated sample matrix will not normally be reviewed favorably. Manuscripts in which mass spectrometry is the dominant analytical method and chromatography is of marked secondary importance may be declined.