使用多中心细胞学切片进行甲状腺癌无注释基因突变估计。

IF 2.4 3区 医学 Q2 PATHOLOGY
Siping Xiong, Shuguang Liu, Wei Zhang, Chao Zeng, Degui Liao, Tian Tang, Shimin Wang, Yimin Guo
{"title":"使用多中心细胞学切片进行甲状腺癌无注释基因突变估计。","authors":"Siping Xiong, Shuguang Liu, Wei Zhang, Chao Zeng, Degui Liao, Tian Tang, Shimin Wang, Yimin Guo","doi":"10.1186/s13000-025-01618-1","DOIUrl":null,"url":null,"abstract":"<p><p>Thyroid cancer is the most common form of endocrine malignancy and fine needle aspiration (FNA) cytology is a reliable method for clinical diagnosis. Identification of genetic mutation status has been proved efficient for accurate diagnosis and prognostic risk stratification. In this study, a dataset with thyroid cytological images of 310 indeterminate (TBS3 or 4) and 392 PTC (TBS5 or 6) was collected. We introduced a multimodal cascaded network framework to estimate BARF V600E and RAS mutations directly from thyroid cytological slides. The area under the curve in the external testing set achieved 0.902 ± 0.063 and 0.801 ± 0.137 AUCs for BRAF, and RAS, respectively. The results demonstrated that deep neural networks have the potential in cytologically predicting valuable diagnosis and comprehensive genetic status.</p>","PeriodicalId":11237,"journal":{"name":"Diagnostic Pathology","volume":"20 1","pages":"22"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846261/pdf/","citationCount":"0","resultStr":"{\"title\":\"Annotation-free genetic mutation estimation of thyroid cancer using cytological slides from multi-centers.\",\"authors\":\"Siping Xiong, Shuguang Liu, Wei Zhang, Chao Zeng, Degui Liao, Tian Tang, Shimin Wang, Yimin Guo\",\"doi\":\"10.1186/s13000-025-01618-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thyroid cancer is the most common form of endocrine malignancy and fine needle aspiration (FNA) cytology is a reliable method for clinical diagnosis. Identification of genetic mutation status has been proved efficient for accurate diagnosis and prognostic risk stratification. In this study, a dataset with thyroid cytological images of 310 indeterminate (TBS3 or 4) and 392 PTC (TBS5 or 6) was collected. We introduced a multimodal cascaded network framework to estimate BARF V600E and RAS mutations directly from thyroid cytological slides. The area under the curve in the external testing set achieved 0.902 ± 0.063 and 0.801 ± 0.137 AUCs for BRAF, and RAS, respectively. The results demonstrated that deep neural networks have the potential in cytologically predicting valuable diagnosis and comprehensive genetic status.</p>\",\"PeriodicalId\":11237,\"journal\":{\"name\":\"Diagnostic Pathology\",\"volume\":\"20 1\",\"pages\":\"22\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846261/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diagnostic Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13000-025-01618-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13000-025-01618-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

甲状腺癌是最常见的内分泌恶性肿瘤,细针穿刺细胞学检查是临床诊断的可靠方法。基因突变状态的识别已被证明是准确诊断和预后风险分层的有效方法。本研究收集了310例不确定(TBS3或4)和392例PTC (TBS5或6)的甲状腺细胞学图像数据集。我们引入了一个多模态级联网络框架,直接从甲状腺细胞学切片中估计BARF V600E和RAS突变。BRAF和RAS的外部测试集曲线下面积分别为0.902±0.063和0.801±0.137 auc。结果表明,深度神经网络在细胞学预测有价值的诊断和综合遗传状态方面具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Annotation-free genetic mutation estimation of thyroid cancer using cytological slides from multi-centers.

Thyroid cancer is the most common form of endocrine malignancy and fine needle aspiration (FNA) cytology is a reliable method for clinical diagnosis. Identification of genetic mutation status has been proved efficient for accurate diagnosis and prognostic risk stratification. In this study, a dataset with thyroid cytological images of 310 indeterminate (TBS3 or 4) and 392 PTC (TBS5 or 6) was collected. We introduced a multimodal cascaded network framework to estimate BARF V600E and RAS mutations directly from thyroid cytological slides. The area under the curve in the external testing set achieved 0.902 ± 0.063 and 0.801 ± 0.137 AUCs for BRAF, and RAS, respectively. The results demonstrated that deep neural networks have the potential in cytologically predicting valuable diagnosis and comprehensive genetic status.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diagnostic Pathology
Diagnostic Pathology 医学-病理学
CiteScore
4.60
自引率
0.00%
发文量
93
审稿时长
1 months
期刊介绍: Diagnostic Pathology is an open access, peer-reviewed, online journal that considers research in surgical and clinical pathology, immunology, and biology, with a special focus on cutting-edge approaches in diagnostic pathology and tissue-based therapy. The journal covers all aspects of surgical pathology, including classic diagnostic pathology, prognosis-related diagnosis (tumor stages, prognosis markers, such as MIB-percentage, hormone receptors, etc.), and therapy-related findings. The journal also focuses on the technological aspects of pathology, including molecular biology techniques, morphometry aspects (stereology, DNA analysis, syntactic structure analysis), communication aspects (telecommunication, virtual microscopy, virtual pathology institutions, etc.), and electronic education and quality assurance (for example interactive publication, on-line references with automated updating, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信