流固共轭对超临界水流动和传热的影响:直接数值模拟的视角

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Yifan Bai , Han Wang , Jinghui Wu , Minyun Liu , Haicai Lyu , Yanping Huang
{"title":"流固共轭对超临界水流动和传热的影响:直接数值模拟的视角","authors":"Yifan Bai ,&nbsp;Han Wang ,&nbsp;Jinghui Wu ,&nbsp;Minyun Liu ,&nbsp;Haicai Lyu ,&nbsp;Yanping Huang","doi":"10.1016/j.ijheatmasstransfer.2025.126868","DOIUrl":null,"url":null,"abstract":"<div><div>An in-depth investigation into the flow and heat transfer characteristics of supercritical water (SCW) is essential for designing and operating Supercritical Water-Cooled Reactor (SCWR) systems. Currently, the great majority of existing direct numerical simulations (DNS) utilize boundary conditions without solid domain in studying the thermal-hydraulic performance of supercritical fluids. However, in practical applications, the fluid-solid conjugation may significantly affect the flow and heat transfer, especially in the near-wall region. The present study utilized a DNS solver implemented in OpenFOAM to examine the effect of fluid-solid conjugation on SCW in vertical and horizontal circular pipes. The wall temperature, mean velocity, instantaneous fluctuations, and turbulence statistics were compared and analyzed under both non-conjugate and conjugate conditions. It was found that in vertical upward flow with conjugate heat transfer, the wall temperature was slightly higher than that of non-conjugate heat transfer, leading to a more pronounced heat transfer deterioration. Temperature fluctuations at the wall were significantly suppressed by the solid domain, weakening the turbulence and heat transfer. In horizontal flows, under non-conjugate conditions, severe heat transfer deterioration occurred at the top generatrix due to buoyancy effects, resulting in a highly uneven circumferential distribution in the wall temperature. When the solid domain is taken into consideration, heat conduction within the solid domain redistributed the heat from the top to the sides, leading to a significant reduction in heat flux at the top. The decreased heat flux lowered the wall temperature and alleviated its uneven distribution, notably enhancing the heat transfer in the top region.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"242 ","pages":"Article 126868"},"PeriodicalIF":5.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of fluid-solid conjugation on flow and heat transfer of supercritical water: Perspective from direct numerical simulation\",\"authors\":\"Yifan Bai ,&nbsp;Han Wang ,&nbsp;Jinghui Wu ,&nbsp;Minyun Liu ,&nbsp;Haicai Lyu ,&nbsp;Yanping Huang\",\"doi\":\"10.1016/j.ijheatmasstransfer.2025.126868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>An in-depth investigation into the flow and heat transfer characteristics of supercritical water (SCW) is essential for designing and operating Supercritical Water-Cooled Reactor (SCWR) systems. Currently, the great majority of existing direct numerical simulations (DNS) utilize boundary conditions without solid domain in studying the thermal-hydraulic performance of supercritical fluids. However, in practical applications, the fluid-solid conjugation may significantly affect the flow and heat transfer, especially in the near-wall region. The present study utilized a DNS solver implemented in OpenFOAM to examine the effect of fluid-solid conjugation on SCW in vertical and horizontal circular pipes. The wall temperature, mean velocity, instantaneous fluctuations, and turbulence statistics were compared and analyzed under both non-conjugate and conjugate conditions. It was found that in vertical upward flow with conjugate heat transfer, the wall temperature was slightly higher than that of non-conjugate heat transfer, leading to a more pronounced heat transfer deterioration. Temperature fluctuations at the wall were significantly suppressed by the solid domain, weakening the turbulence and heat transfer. In horizontal flows, under non-conjugate conditions, severe heat transfer deterioration occurred at the top generatrix due to buoyancy effects, resulting in a highly uneven circumferential distribution in the wall temperature. When the solid domain is taken into consideration, heat conduction within the solid domain redistributed the heat from the top to the sides, leading to a significant reduction in heat flux at the top. The decreased heat flux lowered the wall temperature and alleviated its uneven distribution, notably enhancing the heat transfer in the top region.</div></div>\",\"PeriodicalId\":336,\"journal\":{\"name\":\"International Journal of Heat and Mass Transfer\",\"volume\":\"242 \",\"pages\":\"Article 126868\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Heat and Mass Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0017931025002091\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931025002091","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
The effects of fluid-solid conjugation on flow and heat transfer of supercritical water: Perspective from direct numerical simulation
An in-depth investigation into the flow and heat transfer characteristics of supercritical water (SCW) is essential for designing and operating Supercritical Water-Cooled Reactor (SCWR) systems. Currently, the great majority of existing direct numerical simulations (DNS) utilize boundary conditions without solid domain in studying the thermal-hydraulic performance of supercritical fluids. However, in practical applications, the fluid-solid conjugation may significantly affect the flow and heat transfer, especially in the near-wall region. The present study utilized a DNS solver implemented in OpenFOAM to examine the effect of fluid-solid conjugation on SCW in vertical and horizontal circular pipes. The wall temperature, mean velocity, instantaneous fluctuations, and turbulence statistics were compared and analyzed under both non-conjugate and conjugate conditions. It was found that in vertical upward flow with conjugate heat transfer, the wall temperature was slightly higher than that of non-conjugate heat transfer, leading to a more pronounced heat transfer deterioration. Temperature fluctuations at the wall were significantly suppressed by the solid domain, weakening the turbulence and heat transfer. In horizontal flows, under non-conjugate conditions, severe heat transfer deterioration occurred at the top generatrix due to buoyancy effects, resulting in a highly uneven circumferential distribution in the wall temperature. When the solid domain is taken into consideration, heat conduction within the solid domain redistributed the heat from the top to the sides, leading to a significant reduction in heat flux at the top. The decreased heat flux lowered the wall temperature and alleviated its uneven distribution, notably enhancing the heat transfer in the top region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信