剪切流中无质量费米子的稳态、位移电流和自旋极化

IF 5.3 2区 物理与天体物理 Q1 Physics and Astronomy
Shu Lin, Ziyue Wang
{"title":"剪切流中无质量费米子的稳态、位移电流和自旋极化","authors":"Shu Lin, Ziyue Wang","doi":"10.1103/physrevd.111.034032","DOIUrl":null,"url":null,"abstract":"We consider spin polarization of massless fermions in a shear flow, whose complete contributions contain magnetization current and side-jump current known from collisional chiral kinetic theory. We argue that the side-jump current adopts interpretation of displacement current. We explicitly determine the displacement current contribution in the steady state reached in shear flow for a quantum electrodynamics (QED) plasma. We find the displacement contribution enhances the magnetization contribution at small and large momenta, but leads to a suppression effect at intermediate momenta. Major differences from previous studies on collisional effect are (i) the fermions are in the same steady state as the medium rather than being probes; (ii) Compton scattering and pair annihilation are also included in addition to the Coulomb scattering considered before. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"21 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steady state, displacement current, and spin polarization for massless fermion in a shear flow\",\"authors\":\"Shu Lin, Ziyue Wang\",\"doi\":\"10.1103/physrevd.111.034032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider spin polarization of massless fermions in a shear flow, whose complete contributions contain magnetization current and side-jump current known from collisional chiral kinetic theory. We argue that the side-jump current adopts interpretation of displacement current. We explicitly determine the displacement current contribution in the steady state reached in shear flow for a quantum electrodynamics (QED) plasma. We find the displacement contribution enhances the magnetization contribution at small and large momenta, but leads to a suppression effect at intermediate momenta. Major differences from previous studies on collisional effect are (i) the fermions are in the same steady state as the medium rather than being probes; (ii) Compton scattering and pair annihilation are also included in addition to the Coulomb scattering considered before. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.034032\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.034032","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑剪切流中无质量费米子的自旋极化,其完全贡献包括从碰撞手性动力学理论中已知的磁化电流和侧跳电流。我们认为侧跃电流采用位移电流的解释。我们明确地确定了量子电动力学(QED)等离子体在剪切流中达到稳态时位移电流的贡献。在小动量和大动量处,位移贡献增强了磁化贡献,但在中动量处产生抑制效应。与以往碰撞效应研究的主要区别在于:(1)费米子与介质处于相同的稳定状态,而不是探测器;(ii)除了前面考虑的库仑散射外,还包括康普顿散射和对湮灭。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steady state, displacement current, and spin polarization for massless fermion in a shear flow
We consider spin polarization of massless fermions in a shear flow, whose complete contributions contain magnetization current and side-jump current known from collisional chiral kinetic theory. We argue that the side-jump current adopts interpretation of displacement current. We explicitly determine the displacement current contribution in the steady state reached in shear flow for a quantum electrodynamics (QED) plasma. We find the displacement contribution enhances the magnetization contribution at small and large momenta, but leads to a suppression effect at intermediate momenta. Major differences from previous studies on collisional effect are (i) the fermions are in the same steady state as the medium rather than being probes; (ii) Compton scattering and pair annihilation are also included in addition to the Coulomb scattering considered before. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信