{"title":"多irs辅助MIMO系统中面向空间复用的信道重构","authors":"Yuxuan Chen;Qingqing Wu;Guangji Chen;Wen Chen","doi":"10.1109/TVT.2025.3540067","DOIUrl":null,"url":null,"abstract":"Spatial multiplexing plays a significant role in improving the capacity of multiple-input–multiple-output (MIMO) communication systems. To improve the spectral efficiency (SE) of a point-to-point MIMO system, we exploit the channel reconfiguration capabilities provided by multiple intelligent reflecting surfaces (IRSs) to enhance the spatial multiplexing. Unlike most existing works, we address both the issues of the IRSs placement and elements allocation. To this end, we first introduce an orthogonal placement strategy to mitigate channel correlation, thereby enabling interference-free multi-stream transmission. Subsequently, we propose a successive convex approximation (SCA)-based approach to jointly optimize the IRS elements and power allocation. Our theoretical analysis unveils that equal IRS elements/power allocation scheme becomes asymptotically optimal as the number of IRS elements and transmit power tend to be infinite. Numerical results demonstrate that when the total number of IRS elements or the power exceeds a certain threshold, a multi-IRS assisted system outperforms a single IRS configuration.","PeriodicalId":13421,"journal":{"name":"IEEE Transactions on Vehicular Technology","volume":"74 6","pages":"9840-9845"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Multiplexing Oriented Channel Reconfiguration in Multi-IRS Aided MIMO Systems\",\"authors\":\"Yuxuan Chen;Qingqing Wu;Guangji Chen;Wen Chen\",\"doi\":\"10.1109/TVT.2025.3540067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial multiplexing plays a significant role in improving the capacity of multiple-input–multiple-output (MIMO) communication systems. To improve the spectral efficiency (SE) of a point-to-point MIMO system, we exploit the channel reconfiguration capabilities provided by multiple intelligent reflecting surfaces (IRSs) to enhance the spatial multiplexing. Unlike most existing works, we address both the issues of the IRSs placement and elements allocation. To this end, we first introduce an orthogonal placement strategy to mitigate channel correlation, thereby enabling interference-free multi-stream transmission. Subsequently, we propose a successive convex approximation (SCA)-based approach to jointly optimize the IRS elements and power allocation. Our theoretical analysis unveils that equal IRS elements/power allocation scheme becomes asymptotically optimal as the number of IRS elements and transmit power tend to be infinite. Numerical results demonstrate that when the total number of IRS elements or the power exceeds a certain threshold, a multi-IRS assisted system outperforms a single IRS configuration.\",\"PeriodicalId\":13421,\"journal\":{\"name\":\"IEEE Transactions on Vehicular Technology\",\"volume\":\"74 6\",\"pages\":\"9840-9845\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Vehicular Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10897933/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Vehicular Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10897933/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Spatial Multiplexing Oriented Channel Reconfiguration in Multi-IRS Aided MIMO Systems
Spatial multiplexing plays a significant role in improving the capacity of multiple-input–multiple-output (MIMO) communication systems. To improve the spectral efficiency (SE) of a point-to-point MIMO system, we exploit the channel reconfiguration capabilities provided by multiple intelligent reflecting surfaces (IRSs) to enhance the spatial multiplexing. Unlike most existing works, we address both the issues of the IRSs placement and elements allocation. To this end, we first introduce an orthogonal placement strategy to mitigate channel correlation, thereby enabling interference-free multi-stream transmission. Subsequently, we propose a successive convex approximation (SCA)-based approach to jointly optimize the IRS elements and power allocation. Our theoretical analysis unveils that equal IRS elements/power allocation scheme becomes asymptotically optimal as the number of IRS elements and transmit power tend to be infinite. Numerical results demonstrate that when the total number of IRS elements or the power exceeds a certain threshold, a multi-IRS assisted system outperforms a single IRS configuration.
期刊介绍:
The scope of the Transactions is threefold (which was approved by the IEEE Periodicals Committee in 1967) and is published on the journal website as follows: Communications: The use of mobile radio on land, sea, and air, including cellular radio, two-way radio, and one-way radio, with applications to dispatch and control vehicles, mobile radiotelephone, radio paging, and status monitoring and reporting. Related areas include spectrum usage, component radio equipment such as cavities and antennas, compute control for radio systems, digital modulation and transmission techniques, mobile radio circuit design, radio propagation for vehicular communications, effects of ignition noise and radio frequency interference, and consideration of the vehicle as part of the radio operating environment. Transportation Systems: The use of electronic technology for the control of ground transportation systems including, but not limited to, traffic aid systems; traffic control systems; automatic vehicle identification, location, and monitoring systems; automated transport systems, with single and multiple vehicle control; and moving walkways or people-movers. Vehicular Electronics: The use of electronic or electrical components and systems for control, propulsion, or auxiliary functions, including but not limited to, electronic controls for engineer, drive train, convenience, safety, and other vehicle systems; sensors, actuators, and microprocessors for onboard use; electronic fuel control systems; vehicle electrical components and systems collision avoidance systems; electromagnetic compatibility in the vehicle environment; and electric vehicles and controls.