{"title":"具有磁性靶向效应的工程纳米酶免疫调节剂用于级联酶动力学和超声增强金属免疫治疗前列腺癌","authors":"Yandong Wang, Haodong Li, Junyang Lin, Yutang Li, Keqin Zhang, Hui Li, Qiang Fu, Yanyan Jiang","doi":"10.1038/s41467-025-57190-1","DOIUrl":null,"url":null,"abstract":"<p>Conventional immunotherapy exhibits low response rates due to the immunosuppressive tumor microenvironment (TME). To overcome this limitation, this study introduces ZFPG nanoparticles (ZFPG NPs) with ZnFe<sub>2</sub>O<sub>4</sub>@Pt cores and glucose oxidase (GOx) shells. The ZFPG NPs possess five-enzyme activities, good sonosensitivity, and remarkable magnetic targeting properties, which facilitate sono-metallo-immunotherapy for prostate cancer treatment in male mice. Specifically, the magnetic targeting ability effectively improves their accumulation in tumors while still showing enrichment in the liver and kidneys. The multienzyme cascade catalysis and sonosensitivity of these NPs effectively deplete glutathione and glucose, and enhance the generation and utilization of H<sub>2</sub>O<sub>2</sub>, thereby inducing multiple ROS bursts. Furthermore, these comprehensive effects up-regulate the HMOX1 to promote the Fe<sup>2+</sup> and lipid peroxides accumulation, thereby inducing immunogenic ferroptosis. This strategy facilitates anti-tumor immunity by ameliorating the immunosuppressive TME and inhibiting lung metastatic progression. This joint warfare strategy offers a powerful solution to address conventional immunotherapy limitations.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"24 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering nanozyme immunomodulator with magnetic targeting effect for cascade-enzyodynamic and ultrasound-reinforced metallo-immunotherapy in prostate carcinoma\",\"authors\":\"Yandong Wang, Haodong Li, Junyang Lin, Yutang Li, Keqin Zhang, Hui Li, Qiang Fu, Yanyan Jiang\",\"doi\":\"10.1038/s41467-025-57190-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conventional immunotherapy exhibits low response rates due to the immunosuppressive tumor microenvironment (TME). To overcome this limitation, this study introduces ZFPG nanoparticles (ZFPG NPs) with ZnFe<sub>2</sub>O<sub>4</sub>@Pt cores and glucose oxidase (GOx) shells. The ZFPG NPs possess five-enzyme activities, good sonosensitivity, and remarkable magnetic targeting properties, which facilitate sono-metallo-immunotherapy for prostate cancer treatment in male mice. Specifically, the magnetic targeting ability effectively improves their accumulation in tumors while still showing enrichment in the liver and kidneys. The multienzyme cascade catalysis and sonosensitivity of these NPs effectively deplete glutathione and glucose, and enhance the generation and utilization of H<sub>2</sub>O<sub>2</sub>, thereby inducing multiple ROS bursts. Furthermore, these comprehensive effects up-regulate the HMOX1 to promote the Fe<sup>2+</sup> and lipid peroxides accumulation, thereby inducing immunogenic ferroptosis. This strategy facilitates anti-tumor immunity by ameliorating the immunosuppressive TME and inhibiting lung metastatic progression. This joint warfare strategy offers a powerful solution to address conventional immunotherapy limitations.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-57190-1\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57190-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Engineering nanozyme immunomodulator with magnetic targeting effect for cascade-enzyodynamic and ultrasound-reinforced metallo-immunotherapy in prostate carcinoma
Conventional immunotherapy exhibits low response rates due to the immunosuppressive tumor microenvironment (TME). To overcome this limitation, this study introduces ZFPG nanoparticles (ZFPG NPs) with ZnFe2O4@Pt cores and glucose oxidase (GOx) shells. The ZFPG NPs possess five-enzyme activities, good sonosensitivity, and remarkable magnetic targeting properties, which facilitate sono-metallo-immunotherapy for prostate cancer treatment in male mice. Specifically, the magnetic targeting ability effectively improves their accumulation in tumors while still showing enrichment in the liver and kidneys. The multienzyme cascade catalysis and sonosensitivity of these NPs effectively deplete glutathione and glucose, and enhance the generation and utilization of H2O2, thereby inducing multiple ROS bursts. Furthermore, these comprehensive effects up-regulate the HMOX1 to promote the Fe2+ and lipid peroxides accumulation, thereby inducing immunogenic ferroptosis. This strategy facilitates anti-tumor immunity by ameliorating the immunosuppressive TME and inhibiting lung metastatic progression. This joint warfare strategy offers a powerful solution to address conventional immunotherapy limitations.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.