拉曼光谱用于莱姆病诊断的外部验证。

IF 2 3区 物理与天体物理 Q3 BIOCHEMICAL RESEARCH METHODS
Isaac D. Juárez, Aidan P. Holman, Elizabeth J. Horn, Artem S. Rogovskyy, Dmitry Kurouski
{"title":"拉曼光谱用于莱姆病诊断的外部验证。","authors":"Isaac D. Juárez,&nbsp;Aidan P. Holman,&nbsp;Elizabeth J. Horn,&nbsp;Artem S. Rogovskyy,&nbsp;Dmitry Kurouski","doi":"10.1002/jbio.202400520","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Lyme disease (LD), caused by <i>Borreliella burgdorferi</i>, is the most common tick-borne illness in the United States, yet early-stage diagnosis remains challenging due to the limitations of current serological diagnostics. Raman spectroscopy (RS), paired with partial least squares discriminant analysis (PLS-DA), showed promise as an alternative diagnostic tool. Using RS, we analyzed 107 coded human blood samples (42 LD-positive and 65 LD-negative) obtained from the Lyme Disease Biobank. PLS-DA models showed nearly perfect internal validation performance with a sensitivity and specificity of 97.1% and 100.0%, respectively, indicating robust predictive capabilities. External validation of the developed chemometrics model with 80/20 training/validation split of all spectra gave true positive rates of 92.7% and 87.3% for serological positive and negative spectra, respectively. These findings highlight the potential of RS as a rapid and noninvasive diagnostic platform for LD, particularly when integrated with machine learning.</p>\n </div>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 5","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"External Validation of Raman Spectroscopy for Lyme Disease Diagnostics\",\"authors\":\"Isaac D. Juárez,&nbsp;Aidan P. Holman,&nbsp;Elizabeth J. Horn,&nbsp;Artem S. Rogovskyy,&nbsp;Dmitry Kurouski\",\"doi\":\"10.1002/jbio.202400520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Lyme disease (LD), caused by <i>Borreliella burgdorferi</i>, is the most common tick-borne illness in the United States, yet early-stage diagnosis remains challenging due to the limitations of current serological diagnostics. Raman spectroscopy (RS), paired with partial least squares discriminant analysis (PLS-DA), showed promise as an alternative diagnostic tool. Using RS, we analyzed 107 coded human blood samples (42 LD-positive and 65 LD-negative) obtained from the Lyme Disease Biobank. PLS-DA models showed nearly perfect internal validation performance with a sensitivity and specificity of 97.1% and 100.0%, respectively, indicating robust predictive capabilities. External validation of the developed chemometrics model with 80/20 training/validation split of all spectra gave true positive rates of 92.7% and 87.3% for serological positive and negative spectra, respectively. These findings highlight the potential of RS as a rapid and noninvasive diagnostic platform for LD, particularly when integrated with machine learning.</p>\\n </div>\",\"PeriodicalId\":184,\"journal\":{\"name\":\"Journal of Biophotonics\",\"volume\":\"18 5\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biophotonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400520\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400520","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

由勃氏杆菌(Borreliella burgdorferi)引起的莱姆病(LD)是美国最常见的蜱媒疾病,但由于目前血清学诊断的局限性,早期诊断仍具有挑战性。拉曼光谱(RS)与偏最小二乘判别分析(PLS-DA)相配合,有望成为一种替代诊断工具。利用 RS,我们分析了从莱姆病生物库中获得的 107 份编码人体血液样本(42 份 LD 阳性样本和 65 份 LD 阴性样本)。PLS-DA 模型显示出近乎完美的内部验证性能,灵敏度和特异性分别为 97.1% 和 100.0%,显示出强大的预测能力。通过对所有光谱进行 80/20 的训练/验证分配,对所开发的化学计量学模型进行了外部验证,结果显示血清学阳性和阴性光谱的真阳性率分别为 92.7% 和 87.3%。这些发现凸显了 RS 作为一种快速、无创的 LD 诊断平台的潜力,尤其是在与机器学习相结合时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

External Validation of Raman Spectroscopy for Lyme Disease Diagnostics

External Validation of Raman Spectroscopy for Lyme Disease Diagnostics

Lyme disease (LD), caused by Borreliella burgdorferi, is the most common tick-borne illness in the United States, yet early-stage diagnosis remains challenging due to the limitations of current serological diagnostics. Raman spectroscopy (RS), paired with partial least squares discriminant analysis (PLS-DA), showed promise as an alternative diagnostic tool. Using RS, we analyzed 107 coded human blood samples (42 LD-positive and 65 LD-negative) obtained from the Lyme Disease Biobank. PLS-DA models showed nearly perfect internal validation performance with a sensitivity and specificity of 97.1% and 100.0%, respectively, indicating robust predictive capabilities. External validation of the developed chemometrics model with 80/20 training/validation split of all spectra gave true positive rates of 92.7% and 87.3% for serological positive and negative spectra, respectively. These findings highlight the potential of RS as a rapid and noninvasive diagnostic platform for LD, particularly when integrated with machine learning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biophotonics
Journal of Biophotonics 生物-生化研究方法
CiteScore
5.70
自引率
7.10%
发文量
248
审稿时长
1 months
期刊介绍: The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信