开发一种可扩展的半合成培养基,用于高产白喉毒素生产,使用明确的筛选设计和创新的统计优化方法。

IF 2 4区 生物学 Q3 BIOCHEMICAL RESEARCH METHODS
Prashant R Chawla, Uma Addepally
{"title":"开发一种可扩展的半合成培养基,用于高产白喉毒素生产,使用明确的筛选设计和创新的统计优化方法。","authors":"Prashant R Chawla, Uma Addepally","doi":"10.1080/10826068.2025.2465991","DOIUrl":null,"url":null,"abstract":"<p><p><i>Corynebacterium diphtheriae</i> is the causative agent of diphtheria, which continues to be a serious health risk to children, particularly in countries such as India. Immunization is the best way to fight this illness. Enhancing the synthesis of diphtheria toxin (DT) is essential for the production of vaccines, particularly as immunization programs advance. Pork digestion medium (PDM) was employed as the standard medium for DT production. Nevertheless, this medium has issues with contamination and batch-to-batch variation. The production of DT is extremely low in the alternative synthetic medium. Compared to synthetic media, semi-synthetic media exhibit superior performance. This study's current goal was to increase DT production through the use of the Definitive Screening Design (DSD) methodology to optimize the composition of semi-synthetic media. A total of 11 components were selected for screening of the best suitable components for DT production. NZ-amine, tryptone N1, and maltose had the highest effects on DT production out of all the nutrients that were chosen. The model accuracy is indicated by the R<sup>2</sup> value of 0.9820, which enables the prediction of DT yields. The model suggests the lower concentrations of NZ-amine combined with the moderate amounts of maltose and tryptone N1 is best suitable for the higher amounts of DT yields. With optimized conditions 174 Lf/mL of DT yield was achieved in validation experiments, which is nearer to the PDM yields. According to this study, this enhanced technique, which makes use of an affordable and expandable medium, could make large-scale toxoid production feasible.</p>","PeriodicalId":20401,"journal":{"name":"Preparative Biochemistry & Biotechnology","volume":" ","pages":"1-8"},"PeriodicalIF":2.0000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a scalable semi-synthetic medium for high-yield diphtheria toxin production using a definitive screening design an innovative statistical optimization method.\",\"authors\":\"Prashant R Chawla, Uma Addepally\",\"doi\":\"10.1080/10826068.2025.2465991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Corynebacterium diphtheriae</i> is the causative agent of diphtheria, which continues to be a serious health risk to children, particularly in countries such as India. Immunization is the best way to fight this illness. Enhancing the synthesis of diphtheria toxin (DT) is essential for the production of vaccines, particularly as immunization programs advance. Pork digestion medium (PDM) was employed as the standard medium for DT production. Nevertheless, this medium has issues with contamination and batch-to-batch variation. The production of DT is extremely low in the alternative synthetic medium. Compared to synthetic media, semi-synthetic media exhibit superior performance. This study's current goal was to increase DT production through the use of the Definitive Screening Design (DSD) methodology to optimize the composition of semi-synthetic media. A total of 11 components were selected for screening of the best suitable components for DT production. NZ-amine, tryptone N1, and maltose had the highest effects on DT production out of all the nutrients that were chosen. The model accuracy is indicated by the R<sup>2</sup> value of 0.9820, which enables the prediction of DT yields. The model suggests the lower concentrations of NZ-amine combined with the moderate amounts of maltose and tryptone N1 is best suitable for the higher amounts of DT yields. With optimized conditions 174 Lf/mL of DT yield was achieved in validation experiments, which is nearer to the PDM yields. According to this study, this enhanced technique, which makes use of an affordable and expandable medium, could make large-scale toxoid production feasible.</p>\",\"PeriodicalId\":20401,\"journal\":{\"name\":\"Preparative Biochemistry & Biotechnology\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Preparative Biochemistry & Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10826068.2025.2465991\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Preparative Biochemistry & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10826068.2025.2465991","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

白喉棒状杆菌是白喉的病原体,白喉继续对儿童构成严重的健康风险,特别是在印度等国家。免疫接种是对抗这种疾病的最好方法。加强白喉毒素(DT)的合成对于疫苗的生产至关重要,特别是随着免疫规划的推进。采用猪肉消化培养基(PDM)作为DT生产的标准培养基。然而,这种介质存在污染和批次间变化的问题。在替代合成介质中,DT的产量极低。与合成介质相比,半合成介质表现出优越的性能。本研究目前的目标是通过使用最终筛选设计(DSD)方法来优化半合成介质的组成,从而增加DT的产量。共筛选出11个组分,筛选出最适合DT生产的组分。在所有选择的营养物质中,nz -胺、色氨酸N1和麦芽糖对DT的产生影响最大。模型的R2值为0.9820,可以预测DT产量。该模型表明,较低浓度的nz -胺与适量的麦芽糖和色氨酸N1相结合最适合获得较高的DT产率。在优化条件下,验证实验中DT的产率为174 Lf/mL,接近PDM的产率。根据这项研究,这种增强的技术,利用一种负担得起的和可扩展的介质,可以使大规模类毒素生产成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of a scalable semi-synthetic medium for high-yield diphtheria toxin production using a definitive screening design an innovative statistical optimization method.

Corynebacterium diphtheriae is the causative agent of diphtheria, which continues to be a serious health risk to children, particularly in countries such as India. Immunization is the best way to fight this illness. Enhancing the synthesis of diphtheria toxin (DT) is essential for the production of vaccines, particularly as immunization programs advance. Pork digestion medium (PDM) was employed as the standard medium for DT production. Nevertheless, this medium has issues with contamination and batch-to-batch variation. The production of DT is extremely low in the alternative synthetic medium. Compared to synthetic media, semi-synthetic media exhibit superior performance. This study's current goal was to increase DT production through the use of the Definitive Screening Design (DSD) methodology to optimize the composition of semi-synthetic media. A total of 11 components were selected for screening of the best suitable components for DT production. NZ-amine, tryptone N1, and maltose had the highest effects on DT production out of all the nutrients that were chosen. The model accuracy is indicated by the R2 value of 0.9820, which enables the prediction of DT yields. The model suggests the lower concentrations of NZ-amine combined with the moderate amounts of maltose and tryptone N1 is best suitable for the higher amounts of DT yields. With optimized conditions 174 Lf/mL of DT yield was achieved in validation experiments, which is nearer to the PDM yields. According to this study, this enhanced technique, which makes use of an affordable and expandable medium, could make large-scale toxoid production feasible.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Preparative Biochemistry & Biotechnology
Preparative Biochemistry & Biotechnology 工程技术-生化研究方法
CiteScore
4.90
自引率
3.40%
发文量
98
审稿时长
2 months
期刊介绍: Preparative Biochemistry & Biotechnology is an international forum for rapid dissemination of high quality research results dealing with all aspects of preparative techniques in biochemistry, biotechnology and other life science disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信