IF 5.9 2区 医学 Q1 NEUROSCIENCES
Neuroscience bulletin Pub Date : 2025-04-01 Epub Date: 2025-02-21 DOI:10.1007/s12264-024-01338-4
Yue-Ying Wang, Dan Wu, Yongkun Zhan, Fei Li, Yan-Yu Zang, Xiao-Yu Teng, Linlin Zhang, Gui-Fang Duan, He Wang, Rong Xu, Guiquan Chen, Yun Xu, Jian-Jun Yang, Yongguo Yu, Yun Stone Shi
{"title":"Cation Channel TMEM63A Autonomously Facilitates Oligodendrocyte Differentiation at an Early Stage.","authors":"Yue-Ying Wang, Dan Wu, Yongkun Zhan, Fei Li, Yan-Yu Zang, Xiao-Yu Teng, Linlin Zhang, Gui-Fang Duan, He Wang, Rong Xu, Guiquan Chen, Yun Xu, Jian-Jun Yang, Yongguo Yu, Yun Stone Shi","doi":"10.1007/s12264-024-01338-4","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate timing of myelination is crucial for the proper functioning of the central nervous system. Here, we identified a de novo heterozygous mutation in TMEM63A (c.1894G>A; p. Ala632Thr) in a 7-year-old boy exhibiting hypomyelination. A Ca<sup>2+</sup> influx assay suggested that this is a loss-of-function mutation. To explore how TMEM63A deficiency causes hypomyelination, we generated Tmem63a knockout mice. Genetic deletion of TMEM63A resulted in hypomyelination at postnatal day 14 (P14) arising from impaired differentiation of oligodendrocyte precursor cells (OPCs). Notably, the myelin dysplasia was transient, returning to normal levels by P28. Primary cultures of Tmem63a<sup>-/-</sup> OPCs presented delayed differentiation. Lentivirus-based expression of TMEM63A but not TMEM63A_A632T rescued the differentiation of Tmem63a<sup>-/-</sup> OPCs in vitro and myelination in Tmem63a<sup>-/-</sup> mice. These data thus support the conclusion that the mutation in TMEM63A is the pathogenesis of the hypomyelination in the patient. Our study further demonstrated that TMEM63A-mediated Ca<sup>2+</sup> influx plays critical roles in the early development of myelin and oligodendrocyte differentiation.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":"615-632"},"PeriodicalIF":5.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-024-01338-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

髓鞘化的准确时间对中枢神经系统的正常运作至关重要。在这里,我们在一名表现出髓鞘化不足的 7 岁男孩身上发现了 TMEM63A 的一个新发杂合突变(c.1894G>A; p. Ala632Thr)。Ca2+ 流入试验表明这是一种功能缺失突变。为了探索 TMEM63A 缺乏如何导致髓鞘发育不全,我们培育了 Tmem63a 基因敲除小鼠。基因缺失 TMEM63A 会导致少突胶质细胞前体细胞(OPCs)分化受损,从而导致出生后第 14 天(P14)髓鞘脱落。值得注意的是,髓鞘发育不良是短暂的,到 P28 时会恢复到正常水平。原代培养的 Tmem63a-/- OPCs 分化延迟。基于慢病毒的 TMEM63A 而非 TMEM63A_A632T 表达可挽救 Tmem63a-/- OPCs 的体外分化和 Tmem63a-/- 小鼠的髓鞘化。因此,这些数据支持了 TMEM63A 突变是患者髓鞘发育不全的发病机制这一结论。我们的研究进一步证明,TMEM63A 介导的 Ca2+ 流入在髓鞘早期发育和少突胶质细胞分化过程中起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cation Channel TMEM63A Autonomously Facilitates Oligodendrocyte Differentiation at an Early Stage.

Accurate timing of myelination is crucial for the proper functioning of the central nervous system. Here, we identified a de novo heterozygous mutation in TMEM63A (c.1894G>A; p. Ala632Thr) in a 7-year-old boy exhibiting hypomyelination. A Ca2+ influx assay suggested that this is a loss-of-function mutation. To explore how TMEM63A deficiency causes hypomyelination, we generated Tmem63a knockout mice. Genetic deletion of TMEM63A resulted in hypomyelination at postnatal day 14 (P14) arising from impaired differentiation of oligodendrocyte precursor cells (OPCs). Notably, the myelin dysplasia was transient, returning to normal levels by P28. Primary cultures of Tmem63a-/- OPCs presented delayed differentiation. Lentivirus-based expression of TMEM63A but not TMEM63A_A632T rescued the differentiation of Tmem63a-/- OPCs in vitro and myelination in Tmem63a-/- mice. These data thus support the conclusion that the mutation in TMEM63A is the pathogenesis of the hypomyelination in the patient. Our study further demonstrated that TMEM63A-mediated Ca2+ influx plays critical roles in the early development of myelin and oligodendrocyte differentiation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience bulletin
Neuroscience bulletin NEUROSCIENCES-
CiteScore
7.20
自引率
16.10%
发文量
163
审稿时长
6-12 weeks
期刊介绍: Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer. NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信