IL-6 通过促进保护性抗体反应而非先天性炎症,介导对流感病毒的防御。

IF 7.9 2区 医学 Q1 IMMUNOLOGY
F Piattini, N D Sidiropoulos, I Berest, M Kopf
{"title":"IL-6 通过促进保护性抗体反应而非先天性炎症,介导对流感病毒的防御。","authors":"F Piattini, N D Sidiropoulos, I Berest, M Kopf","doi":"10.1016/j.mucimm.2025.02.001","DOIUrl":null,"url":null,"abstract":"<p><p>Influenza virus infection is a leading cause of morbidity and mortality worldwide, posing a significant public health problem. The pro-inflammatory cytokine interleukin-6 (IL-6) has been shown to promote defense against respiratory viral infection, while excessive IL-6 responses have been associated with severe pneumonia. Heterogenous expression of IL-6R and the IL-6-signal transducer subunit (gp130) across many cell types and different signaling modalities have made it difficult to define the precise role of the IL-6/IL-6R pathway in vivo. We generated multiple cell lineage-specific Il6ra-deficient mice and compared them to global Il6ra<sup>-/-</sup> and Il-6<sup>-/-</sup> mice to dissect the systemic and cell-intrinsic mechanisms for pneumonitis and control of influenza A virus (IAV) infection. Delayed viral clearance and severe morbidity in the global IL-6 knockouts were associated with reduced antibody responses, complement C3 and C5 production, and impaired T follicular helper (Tfh) cell generation. Mice lacking IL-6R exclusively in T cells phenocopied a defect in Tfh cell differentiation and antibody production, although susceptibility to IAV was only mildly affected. Mice lacking IL-6R specifically in B cells mounted normal antibody responses. Moreover, innate pro-inflammatory cytokine responses, myeloid cell infiltration, and adaptive immunity in the lung remained unaffected in Il6ra<sup>fl/fl</sup>LysM<sup>Cr</sup><sup>e</sup> mice. Our results suggest that IL-6 mediates defense against IAV mainly by generating Tfh cells and promoting local C3 production, which together are required for eliciting protective antibody responses by B cells.</p>","PeriodicalId":18877,"journal":{"name":"Mucosal Immunology","volume":" ","pages":""},"PeriodicalIF":7.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IL-6 mediates defense against influenza virus by promoting protective antibody responses but not innate inflammation.\",\"authors\":\"F Piattini, N D Sidiropoulos, I Berest, M Kopf\",\"doi\":\"10.1016/j.mucimm.2025.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Influenza virus infection is a leading cause of morbidity and mortality worldwide, posing a significant public health problem. The pro-inflammatory cytokine interleukin-6 (IL-6) has been shown to promote defense against respiratory viral infection, while excessive IL-6 responses have been associated with severe pneumonia. Heterogenous expression of IL-6R and the IL-6-signal transducer subunit (gp130) across many cell types and different signaling modalities have made it difficult to define the precise role of the IL-6/IL-6R pathway in vivo. We generated multiple cell lineage-specific Il6ra-deficient mice and compared them to global Il6ra<sup>-/-</sup> and Il-6<sup>-/-</sup> mice to dissect the systemic and cell-intrinsic mechanisms for pneumonitis and control of influenza A virus (IAV) infection. Delayed viral clearance and severe morbidity in the global IL-6 knockouts were associated with reduced antibody responses, complement C3 and C5 production, and impaired T follicular helper (Tfh) cell generation. Mice lacking IL-6R exclusively in T cells phenocopied a defect in Tfh cell differentiation and antibody production, although susceptibility to IAV was only mildly affected. Mice lacking IL-6R specifically in B cells mounted normal antibody responses. Moreover, innate pro-inflammatory cytokine responses, myeloid cell infiltration, and adaptive immunity in the lung remained unaffected in Il6ra<sup>fl/fl</sup>LysM<sup>Cr</sup><sup>e</sup> mice. Our results suggest that IL-6 mediates defense against IAV mainly by generating Tfh cells and promoting local C3 production, which together are required for eliciting protective antibody responses by B cells.</p>\",\"PeriodicalId\":18877,\"journal\":{\"name\":\"Mucosal Immunology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mucosal Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mucimm.2025.02.001\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mucosal Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.mucimm.2025.02.001","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

流感病毒感染是全世界发病率和死亡率的主要原因,构成了一个重大的公共卫生问题。促炎细胞因子白细胞介素-6 (IL-6)已被证明可以促进对呼吸道病毒感染的防御,而过度的IL-6反应与严重的肺炎有关。IL-6R和IL-6信号转导亚基(gp130)在多种细胞类型和不同的信号传导方式中的异质表达使得在体内很难确定IL-6/IL-6R通路的精确作用。我们培育了多个细胞谱系特异性Il6ra缺陷小鼠,并将它们与全球的Il6ra-/-和Il-6-/-小鼠进行比较,以剖析肺炎和甲型流感病毒(IAV)感染控制的系统和细胞内在机制。全球IL-6敲除的病毒清除延迟和严重发病率与抗体反应降低、补体C3和C5产生以及T滤泡辅助(Tfh)细胞生成受损有关。仅在T细胞中缺乏IL-6R的小鼠在Tfh细胞分化和抗体产生方面表现出缺陷,尽管对IAV的易感性仅轻微受到影响。在B细胞中特异性缺乏IL-6R的小鼠产生了正常的抗体反应。此外,Il6rafl/flLysMCre小鼠的先天促炎细胞因子反应、骨髓细胞浸润和肺部适应性免疫未受影响。我们的研究结果表明,IL-6介导对IAV的防御主要是通过产生Tfh细胞和促进局部C3的产生,这两种物质都是引发B细胞保护性抗体反应所必需的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IL-6 mediates defense against influenza virus by promoting protective antibody responses but not innate inflammation.

Influenza virus infection is a leading cause of morbidity and mortality worldwide, posing a significant public health problem. The pro-inflammatory cytokine interleukin-6 (IL-6) has been shown to promote defense against respiratory viral infection, while excessive IL-6 responses have been associated with severe pneumonia. Heterogenous expression of IL-6R and the IL-6-signal transducer subunit (gp130) across many cell types and different signaling modalities have made it difficult to define the precise role of the IL-6/IL-6R pathway in vivo. We generated multiple cell lineage-specific Il6ra-deficient mice and compared them to global Il6ra-/- and Il-6-/- mice to dissect the systemic and cell-intrinsic mechanisms for pneumonitis and control of influenza A virus (IAV) infection. Delayed viral clearance and severe morbidity in the global IL-6 knockouts were associated with reduced antibody responses, complement C3 and C5 production, and impaired T follicular helper (Tfh) cell generation. Mice lacking IL-6R exclusively in T cells phenocopied a defect in Tfh cell differentiation and antibody production, although susceptibility to IAV was only mildly affected. Mice lacking IL-6R specifically in B cells mounted normal antibody responses. Moreover, innate pro-inflammatory cytokine responses, myeloid cell infiltration, and adaptive immunity in the lung remained unaffected in Il6rafl/flLysMCre mice. Our results suggest that IL-6 mediates defense against IAV mainly by generating Tfh cells and promoting local C3 production, which together are required for eliciting protective antibody responses by B cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mucosal Immunology
Mucosal Immunology 医学-免疫学
CiteScore
16.60
自引率
3.80%
发文量
100
审稿时长
12 days
期刊介绍: Mucosal Immunology, the official publication of the Society of Mucosal Immunology (SMI), serves as a forum for both basic and clinical scientists to discuss immunity and inflammation involving mucosal tissues. It covers gastrointestinal, pulmonary, nasopharyngeal, oral, ocular, and genitourinary immunology through original research articles, scholarly reviews, commentaries, editorials, and letters. The journal gives equal consideration to basic, translational, and clinical studies and also serves as a primary communication channel for the SMI governing board and its members, featuring society news, meeting announcements, policy discussions, and job/training opportunities advertisements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信