乳腺癌新辅助治疗反应的预测模型。

IF 3.5 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM
Rafael Nambo-Venegas, Virginia Isabel Enríquez-Cárcamo, Marcela Vela-Amieva, Isabel Ibarra-González, Lourdes Lopez-Castro, Sara Aileen Cabrera-Nieto, Juan E Bargalló-Rocha, Cynthia M Villarreal-Garza, Alejandro Mohar, Berenice Palacios-González, Juan P Reyes-Grajeda, Fernanda Sarahí Fajardo-Espinoza, Marlid Cruz-Ramos
{"title":"乳腺癌新辅助治疗反应的预测模型。","authors":"Rafael Nambo-Venegas, Virginia Isabel Enríquez-Cárcamo, Marcela Vela-Amieva, Isabel Ibarra-González, Lourdes Lopez-Castro, Sara Aileen Cabrera-Nieto, Juan E Bargalló-Rocha, Cynthia M Villarreal-Garza, Alejandro Mohar, Berenice Palacios-González, Juan P Reyes-Grajeda, Fernanda Sarahí Fajardo-Espinoza, Marlid Cruz-Ramos","doi":"10.1007/s11306-025-02230-6","DOIUrl":null,"url":null,"abstract":"<p><p>Neoadjuvant therapy is a standard treatment for breast cancer, but its effectiveness varies among patients. This highlights the importance of developing accurate predictive models. Our study uses metabolomics and machine learning to predict the response to neoadjuvant therapy in breast cancer patients.</p><p><strong>Objective: </strong>To develop and validate predictive models using machine learning and circulating metabolites for forecasting responses to neoadjuvant therapy among breast cancer patients, enhancing personalized treatment strategies.</p><p><strong>Methods: </strong>Based on pathological analysis after neoadjuvant chemotherapy and surgery, this retrospective study analyzed 30 young women breast cancer patients from a single institution, categorized as responders or non-responders. Utilizing liquid chromatography-tandem mass spectrometry, we investigated the plasma metabolome, explicitly targeting 40 metabolites, to identify relevant biomarkers linked to therapy response, using machine learning to generate a predictive model and validate the results.</p><p><strong>Results: </strong>Eighteen significant biomarkers were identified, including specific acylcarnitines and amino acids. The most effective predictive model demonstrated a remarkable accuracy of 90.7% and an Area Under the Curve (AUC) of 0.999 at 95% confidence, illustrating its potential utility as a web-based application for future patient management. This model's reliability underscores the significant role of circulating metabolites in predicting therapy outcomes.</p><p><strong>Conclusion: </strong>Our study's findings highlight the crucial role of metabolomics in advancing personalized medicine for breast cancer treatment by effectively identifying metabolite biomarkers correlated with neoadjuvant therapy response. This approach signifies a critical step towards tailoring treatment plans based on individual metabolic profiles, ultimately improving patient outcomes in breast cancer care.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"21 2","pages":"28"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A predictive model for neoadjuvant therapy response in breast cancer.\",\"authors\":\"Rafael Nambo-Venegas, Virginia Isabel Enríquez-Cárcamo, Marcela Vela-Amieva, Isabel Ibarra-González, Lourdes Lopez-Castro, Sara Aileen Cabrera-Nieto, Juan E Bargalló-Rocha, Cynthia M Villarreal-Garza, Alejandro Mohar, Berenice Palacios-González, Juan P Reyes-Grajeda, Fernanda Sarahí Fajardo-Espinoza, Marlid Cruz-Ramos\",\"doi\":\"10.1007/s11306-025-02230-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neoadjuvant therapy is a standard treatment for breast cancer, but its effectiveness varies among patients. This highlights the importance of developing accurate predictive models. Our study uses metabolomics and machine learning to predict the response to neoadjuvant therapy in breast cancer patients.</p><p><strong>Objective: </strong>To develop and validate predictive models using machine learning and circulating metabolites for forecasting responses to neoadjuvant therapy among breast cancer patients, enhancing personalized treatment strategies.</p><p><strong>Methods: </strong>Based on pathological analysis after neoadjuvant chemotherapy and surgery, this retrospective study analyzed 30 young women breast cancer patients from a single institution, categorized as responders or non-responders. Utilizing liquid chromatography-tandem mass spectrometry, we investigated the plasma metabolome, explicitly targeting 40 metabolites, to identify relevant biomarkers linked to therapy response, using machine learning to generate a predictive model and validate the results.</p><p><strong>Results: </strong>Eighteen significant biomarkers were identified, including specific acylcarnitines and amino acids. The most effective predictive model demonstrated a remarkable accuracy of 90.7% and an Area Under the Curve (AUC) of 0.999 at 95% confidence, illustrating its potential utility as a web-based application for future patient management. This model's reliability underscores the significant role of circulating metabolites in predicting therapy outcomes.</p><p><strong>Conclusion: </strong>Our study's findings highlight the crucial role of metabolomics in advancing personalized medicine for breast cancer treatment by effectively identifying metabolite biomarkers correlated with neoadjuvant therapy response. This approach signifies a critical step towards tailoring treatment plans based on individual metabolic profiles, ultimately improving patient outcomes in breast cancer care.</p>\",\"PeriodicalId\":18506,\"journal\":{\"name\":\"Metabolomics\",\"volume\":\"21 2\",\"pages\":\"28\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11306-025-02230-6\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-025-02230-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

新辅助治疗是乳腺癌的标准治疗方法,但其疗效因患者而异。这突出了开发准确的预测模型的重要性。我们的研究使用代谢组学和机器学习来预测乳腺癌患者对新辅助治疗的反应。目的:利用机器学习和循环代谢物建立并验证预测模型,预测乳腺癌患者对新辅助治疗的反应,增强个性化治疗策略。方法:基于新辅助化疗和手术后的病理分析,本回顾性研究分析了来自单一机构的30例年轻女性乳腺癌患者,分为反应者和无反应者。利用液相色谱-串联质谱法,我们研究了血浆代谢组,明确针对40种代谢物,以确定与治疗反应相关的生物标志物,使用机器学习生成预测模型并验证结果。结果:鉴定出18个重要的生物标志物,包括特异性酰基肉碱和氨基酸。最有效的预测模型在95%置信度下的准确率为90.7%,曲线下面积(AUC)为0.999,说明了其作为未来基于网络的患者管理应用程序的潜在效用。该模型的可靠性强调了循环代谢物在预测治疗结果中的重要作用。结论:我们的研究结果强调了代谢组学通过有效识别与新辅助治疗反应相关的代谢物生物标志物,在推进乳腺癌个性化治疗中的关键作用。这种方法标志着根据个体代谢特征定制治疗计划的关键一步,最终改善乳腺癌患者的治疗结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A predictive model for neoadjuvant therapy response in breast cancer.

Neoadjuvant therapy is a standard treatment for breast cancer, but its effectiveness varies among patients. This highlights the importance of developing accurate predictive models. Our study uses metabolomics and machine learning to predict the response to neoadjuvant therapy in breast cancer patients.

Objective: To develop and validate predictive models using machine learning and circulating metabolites for forecasting responses to neoadjuvant therapy among breast cancer patients, enhancing personalized treatment strategies.

Methods: Based on pathological analysis after neoadjuvant chemotherapy and surgery, this retrospective study analyzed 30 young women breast cancer patients from a single institution, categorized as responders or non-responders. Utilizing liquid chromatography-tandem mass spectrometry, we investigated the plasma metabolome, explicitly targeting 40 metabolites, to identify relevant biomarkers linked to therapy response, using machine learning to generate a predictive model and validate the results.

Results: Eighteen significant biomarkers were identified, including specific acylcarnitines and amino acids. The most effective predictive model demonstrated a remarkable accuracy of 90.7% and an Area Under the Curve (AUC) of 0.999 at 95% confidence, illustrating its potential utility as a web-based application for future patient management. This model's reliability underscores the significant role of circulating metabolites in predicting therapy outcomes.

Conclusion: Our study's findings highlight the crucial role of metabolomics in advancing personalized medicine for breast cancer treatment by effectively identifying metabolite biomarkers correlated with neoadjuvant therapy response. This approach signifies a critical step towards tailoring treatment plans based on individual metabolic profiles, ultimately improving patient outcomes in breast cancer care.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolomics
Metabolomics 医学-内分泌学与代谢
CiteScore
6.60
自引率
2.80%
发文量
84
审稿时长
2 months
期刊介绍: Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to: metabolomic applications within man, including pre-clinical and clinical pharmacometabolomics for precision medicine metabolic profiling and fingerprinting metabolite target analysis metabolomic applications within animals, plants and microbes transcriptomics and proteomics in systems biology Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信