探索不明原因猝死(SUD)病例的转录组特征。

IF 2.2 3区 医学 Q1 MEDICINE, LEGAL
Jacqueline Neubauer, Guro Dørum, Cordula Haas
{"title":"探索不明原因猝死(SUD)病例的转录组特征。","authors":"Jacqueline Neubauer, Guro Dørum, Cordula Haas","doi":"10.1007/s00414-025-03414-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Molecular autopsy in sudden unexplained death (SUD) has successfully identified pathogenic variants in cardiovascular genes in a substantial proportion of cases, contributing to prevention strategies in family members. However, many SUD cases remain genetically unresolved, prompting investigations into other omics technologies to better understand the pathogenic mechanisms leading to a sudden death event. In this study, whole transcriptome sequencing was performed on heart samples from 43 SUD cases and 17 heart-healthy controls, with the aim to identify disease-specific transcriptome signatures in sudden unexplained death.</p><p><strong>Results: </strong>PCA based on the top 500 genes with the highest variance among the samples showed no clear separation between SUD and controls or among the three SUD subgroups. DESeq2 identified 1,676 differentially expressed genes between SUD and controls with significantly upregulated genes involved in biological processes such as angiogenesis, blood vessel development, vasculogenesis and cell adhesion. Pathway analysis of the differentially expressed genes showed that most were downregulated and involved in amide/peptide biosynthesis and fatty acid metabolism. Additional analysis of SUD subgroups revealed unique gene expression patterns and highlighted differentially expressed genes within each subgroup.</p><p><strong>Conclusion: </strong>Gene expression analysis of SUD heart tissue is a promising approach to identify cardiac disease-related pathways to further understand the pathological mechanisms leading to a sudden death event. However, due to the heterogeneity of the SUD cases and the unclear phenotype, further studies in larger cohorts are needed.</p>","PeriodicalId":14071,"journal":{"name":"International Journal of Legal Medicine","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring transcriptomic signatures in sudden unexplained death (SUD) cases.\",\"authors\":\"Jacqueline Neubauer, Guro Dørum, Cordula Haas\",\"doi\":\"10.1007/s00414-025-03414-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Molecular autopsy in sudden unexplained death (SUD) has successfully identified pathogenic variants in cardiovascular genes in a substantial proportion of cases, contributing to prevention strategies in family members. However, many SUD cases remain genetically unresolved, prompting investigations into other omics technologies to better understand the pathogenic mechanisms leading to a sudden death event. In this study, whole transcriptome sequencing was performed on heart samples from 43 SUD cases and 17 heart-healthy controls, with the aim to identify disease-specific transcriptome signatures in sudden unexplained death.</p><p><strong>Results: </strong>PCA based on the top 500 genes with the highest variance among the samples showed no clear separation between SUD and controls or among the three SUD subgroups. DESeq2 identified 1,676 differentially expressed genes between SUD and controls with significantly upregulated genes involved in biological processes such as angiogenesis, blood vessel development, vasculogenesis and cell adhesion. Pathway analysis of the differentially expressed genes showed that most were downregulated and involved in amide/peptide biosynthesis and fatty acid metabolism. Additional analysis of SUD subgroups revealed unique gene expression patterns and highlighted differentially expressed genes within each subgroup.</p><p><strong>Conclusion: </strong>Gene expression analysis of SUD heart tissue is a promising approach to identify cardiac disease-related pathways to further understand the pathological mechanisms leading to a sudden death event. However, due to the heterogeneity of the SUD cases and the unclear phenotype, further studies in larger cohorts are needed.</p>\",\"PeriodicalId\":14071,\"journal\":{\"name\":\"International Journal of Legal Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Legal Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00414-025-03414-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Legal Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00414-025-03414-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

摘要

背景:不明原因猝死(SUD)的分子尸检已经成功地在相当比例的病例中发现了心血管基因的致病变异,有助于家庭成员的预防策略。然而,许多SUD病例在遗传学上仍未得到解决,这促使人们研究其他组学技术,以更好地了解导致猝死事件的致病机制。在这项研究中,对43例SUD患者和17例心脏健康对照者的心脏样本进行了全转录组测序,目的是确定不明原因猝死的疾病特异性转录组特征。结果:对样本中方差最大的前500个基因进行PCA分析,发现SUD与对照组之间以及三个SUD亚组之间没有明显的分离。DESeq2在SUD与对照组之间发现了1676个差异表达基因,其中涉及血管生成、血管发育、血管发生和细胞粘附等生物过程的基因显著上调。对差异表达基因的通路分析表明,大多数基因下调,参与酰胺/肽生物合成和脂肪酸代谢。对SUD亚组的进一步分析揭示了独特的基因表达模式,并强调了每个亚组中差异表达的基因。结论:SUD心脏组织基因表达分析是一种很有前景的方法,可以识别心脏疾病相关通路,进一步了解导致猝死事件的病理机制。然而,由于SUD病例的异质性和不明确的表型,需要在更大的队列中进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring transcriptomic signatures in sudden unexplained death (SUD) cases.

Background: Molecular autopsy in sudden unexplained death (SUD) has successfully identified pathogenic variants in cardiovascular genes in a substantial proportion of cases, contributing to prevention strategies in family members. However, many SUD cases remain genetically unresolved, prompting investigations into other omics technologies to better understand the pathogenic mechanisms leading to a sudden death event. In this study, whole transcriptome sequencing was performed on heart samples from 43 SUD cases and 17 heart-healthy controls, with the aim to identify disease-specific transcriptome signatures in sudden unexplained death.

Results: PCA based on the top 500 genes with the highest variance among the samples showed no clear separation between SUD and controls or among the three SUD subgroups. DESeq2 identified 1,676 differentially expressed genes between SUD and controls with significantly upregulated genes involved in biological processes such as angiogenesis, blood vessel development, vasculogenesis and cell adhesion. Pathway analysis of the differentially expressed genes showed that most were downregulated and involved in amide/peptide biosynthesis and fatty acid metabolism. Additional analysis of SUD subgroups revealed unique gene expression patterns and highlighted differentially expressed genes within each subgroup.

Conclusion: Gene expression analysis of SUD heart tissue is a promising approach to identify cardiac disease-related pathways to further understand the pathological mechanisms leading to a sudden death event. However, due to the heterogeneity of the SUD cases and the unclear phenotype, further studies in larger cohorts are needed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
9.50%
发文量
165
审稿时长
1 months
期刊介绍: The International Journal of Legal Medicine aims to improve the scientific resources used in the elucidation of crime and related forensic applications at a high level of evidential proof. The journal offers review articles tracing development in specific areas, with up-to-date analysis; original articles discussing significant recent research results; case reports describing interesting and exceptional examples; population data; letters to the editors; and technical notes, which appear in a section originally created for rapid publication of data in the dynamic field of DNA analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信