Tong Yin, Junyun Yuan, Lu Liu, Yinxin Wang, Yuanfang Lin, Kangwen Ming, Hang Lv
{"title":"面对Z世代的焦虑:电针疗法可调节社交隔离小鼠杏仁核-基底外侧的氧化应激和小胶质细胞活性。","authors":"Tong Yin, Junyun Yuan, Lu Liu, Yinxin Wang, Yuanfang Lin, Kangwen Ming, Hang Lv","doi":"10.3389/fpsyt.2024.1496201","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Anxiety disorders are prevalent mental health conditions characterized by significant impairments in daily functioning and social interactions. Despite the effectiveness of pharmacological treatments, challenges such as medication resistance, adverse side effects, and the high rate of relapse necessitate the exploration of alternative therapies. Recently, electroacupuncture (EA) has garnered attention as a promising non-pharmacological intervention for anxiety disorders; however, the mechanisms by which EA exerts its anxiolytic effects remain poorly understood. This study aims to elucidate the role of microglial cells in anxiety, specifically examining how EA modulates microglial morphology and function within the basolateral amygdala (BLA) in the context of anxiety induced by social isolation.</p><p><strong>Methods: </strong>Utilizing a mouse model of social isolation-induced anxiety, we evaluated anxiety-like behaviors through the Elevated Plus Maze (EPM) and Open Field Test (OFT). Additionally, biochemical analyses and immunofluorescence imaging were performed to assess the expression of NADPH oxidase 2 (NOX2), microglial activation markers, and levels of oxidative stress.</p><p><strong>Results: </strong>Our findings reveal that EA treatment significantly mitigates anxiety-like behaviors in mice, correlating with a reduction in NOX2 expression within BLA microglia and decreased levels of reactive oxygen species (ROS). Furthermore, EA was observed to restore normal microglial morphology, indicating its potential role in modulating microglial activity.</p><p><strong>Discussion: </strong>The results of this study suggest that EA exerts its anxiolytic effects through the modulation of oxidative stress and the activity of microglia in the BLA. These findings provide new insights into the cellular mechanisms underlying the therapeutic effects of EA, highlighting the potential for non-pharmacological strategies in the management of anxiety disorders and paving the way for future research aimed at improving clinical outcomes for individuals suffering from anxiety.</p>","PeriodicalId":12605,"journal":{"name":"Frontiers in Psychiatry","volume":"15 ","pages":"1496201"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839672/pdf/","citationCount":"0","resultStr":"{\"title\":\"Confronting the anxiety of Generation Z: electroacupuncture therapy regulates oxidative stress and microglia activity in amygdala-basolateral of socially isolated mice.\",\"authors\":\"Tong Yin, Junyun Yuan, Lu Liu, Yinxin Wang, Yuanfang Lin, Kangwen Ming, Hang Lv\",\"doi\":\"10.3389/fpsyt.2024.1496201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Anxiety disorders are prevalent mental health conditions characterized by significant impairments in daily functioning and social interactions. Despite the effectiveness of pharmacological treatments, challenges such as medication resistance, adverse side effects, and the high rate of relapse necessitate the exploration of alternative therapies. Recently, electroacupuncture (EA) has garnered attention as a promising non-pharmacological intervention for anxiety disorders; however, the mechanisms by which EA exerts its anxiolytic effects remain poorly understood. This study aims to elucidate the role of microglial cells in anxiety, specifically examining how EA modulates microglial morphology and function within the basolateral amygdala (BLA) in the context of anxiety induced by social isolation.</p><p><strong>Methods: </strong>Utilizing a mouse model of social isolation-induced anxiety, we evaluated anxiety-like behaviors through the Elevated Plus Maze (EPM) and Open Field Test (OFT). Additionally, biochemical analyses and immunofluorescence imaging were performed to assess the expression of NADPH oxidase 2 (NOX2), microglial activation markers, and levels of oxidative stress.</p><p><strong>Results: </strong>Our findings reveal that EA treatment significantly mitigates anxiety-like behaviors in mice, correlating with a reduction in NOX2 expression within BLA microglia and decreased levels of reactive oxygen species (ROS). Furthermore, EA was observed to restore normal microglial morphology, indicating its potential role in modulating microglial activity.</p><p><strong>Discussion: </strong>The results of this study suggest that EA exerts its anxiolytic effects through the modulation of oxidative stress and the activity of microglia in the BLA. These findings provide new insights into the cellular mechanisms underlying the therapeutic effects of EA, highlighting the potential for non-pharmacological strategies in the management of anxiety disorders and paving the way for future research aimed at improving clinical outcomes for individuals suffering from anxiety.</p>\",\"PeriodicalId\":12605,\"journal\":{\"name\":\"Frontiers in Psychiatry\",\"volume\":\"15 \",\"pages\":\"1496201\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11839672/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fpsyt.2024.1496201\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fpsyt.2024.1496201","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
Confronting the anxiety of Generation Z: electroacupuncture therapy regulates oxidative stress and microglia activity in amygdala-basolateral of socially isolated mice.
Introduction: Anxiety disorders are prevalent mental health conditions characterized by significant impairments in daily functioning and social interactions. Despite the effectiveness of pharmacological treatments, challenges such as medication resistance, adverse side effects, and the high rate of relapse necessitate the exploration of alternative therapies. Recently, electroacupuncture (EA) has garnered attention as a promising non-pharmacological intervention for anxiety disorders; however, the mechanisms by which EA exerts its anxiolytic effects remain poorly understood. This study aims to elucidate the role of microglial cells in anxiety, specifically examining how EA modulates microglial morphology and function within the basolateral amygdala (BLA) in the context of anxiety induced by social isolation.
Methods: Utilizing a mouse model of social isolation-induced anxiety, we evaluated anxiety-like behaviors through the Elevated Plus Maze (EPM) and Open Field Test (OFT). Additionally, biochemical analyses and immunofluorescence imaging were performed to assess the expression of NADPH oxidase 2 (NOX2), microglial activation markers, and levels of oxidative stress.
Results: Our findings reveal that EA treatment significantly mitigates anxiety-like behaviors in mice, correlating with a reduction in NOX2 expression within BLA microglia and decreased levels of reactive oxygen species (ROS). Furthermore, EA was observed to restore normal microglial morphology, indicating its potential role in modulating microglial activity.
Discussion: The results of this study suggest that EA exerts its anxiolytic effects through the modulation of oxidative stress and the activity of microglia in the BLA. These findings provide new insights into the cellular mechanisms underlying the therapeutic effects of EA, highlighting the potential for non-pharmacological strategies in the management of anxiety disorders and paving the way for future research aimed at improving clinical outcomes for individuals suffering from anxiety.
期刊介绍:
Frontiers in Psychiatry publishes rigorously peer-reviewed research across a wide spectrum of translational, basic and clinical research. Field Chief Editor Stefan Borgwardt at the University of Basel is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
The journal''s mission is to use translational approaches to improve therapeutic options for mental illness and consequently to improve patient treatment outcomes.