小鼠卵母细胞和早期胚胎中PIP3合成对PI3K亚型p110α和p110δ有不同的要求。

IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY
Development Pub Date : 2025-03-15 Epub Date: 2025-03-26 DOI:10.1242/dev.204398
Anne Bourdais, Patricia Viard, Jenny Bormann, Côme Sesboüé, Daniel Guerrier, Nicole Therville, Julie Guillermet-Guibert, John Carroll, Guillaume Halet
{"title":"小鼠卵母细胞和早期胚胎中PIP3合成对PI3K亚型p110α和p110δ有不同的要求。","authors":"Anne Bourdais, Patricia Viard, Jenny Bormann, Côme Sesboüé, Daniel Guerrier, Nicole Therville, Julie Guillermet-Guibert, John Carroll, Guillaume Halet","doi":"10.1242/dev.204398","DOIUrl":null,"url":null,"abstract":"<p><p>The phosphoinositide 3-kinase (PI3K)/Akt pathway is thought to regulate key steps of mammalian oogenesis, such as dormant oocyte awakening during follicular activation, meiotic resumption and oocyte maturation. Supporting evidence is, however, indirect, as oocyte PI3K activation has never been formally demonstrated, and the PI3K isoforms involved have not been revealed. Here, we employed fluorescent PIP3 biosensors to characterize PI3K dynamics in mouse oocytes and we investigated the contribution of the PI3K isoform p110α by conditional genetic ablation. Prophase oocytes showed baseline PI3K/Akt activation that could be further stimulated by adding Kit ligand. Contrary to previous reports, maternal PI3K proved dispensable for oocyte maturation in vitro, yet it was required for PIP3 synthesis in early embryos. We further show that oocyte p110α is not essential for oogenesis and female fertility. Accordingly, our data suggest that Kit ligand activates isoform p110δ for PIP3 synthesis in oocytes. In contrast, constitutive PIP3 synthesis in early embryos is achieved by maternal p110α acting redundantly with p110δ. This study highlights the relevance of PIP3 biosensors in establishing the dynamics, mechanisms and roles of maternal PI3K signaling during mammalian oogenesis.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinct requirements for PI3K isoforms p110α and p110δ for PIP3 synthesis in mouse oocytes and early embryos.\",\"authors\":\"Anne Bourdais, Patricia Viard, Jenny Bormann, Côme Sesboüé, Daniel Guerrier, Nicole Therville, Julie Guillermet-Guibert, John Carroll, Guillaume Halet\",\"doi\":\"10.1242/dev.204398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The phosphoinositide 3-kinase (PI3K)/Akt pathway is thought to regulate key steps of mammalian oogenesis, such as dormant oocyte awakening during follicular activation, meiotic resumption and oocyte maturation. Supporting evidence is, however, indirect, as oocyte PI3K activation has never been formally demonstrated, and the PI3K isoforms involved have not been revealed. Here, we employed fluorescent PIP3 biosensors to characterize PI3K dynamics in mouse oocytes and we investigated the contribution of the PI3K isoform p110α by conditional genetic ablation. Prophase oocytes showed baseline PI3K/Akt activation that could be further stimulated by adding Kit ligand. Contrary to previous reports, maternal PI3K proved dispensable for oocyte maturation in vitro, yet it was required for PIP3 synthesis in early embryos. We further show that oocyte p110α is not essential for oogenesis and female fertility. Accordingly, our data suggest that Kit ligand activates isoform p110δ for PIP3 synthesis in oocytes. In contrast, constitutive PIP3 synthesis in early embryos is achieved by maternal p110α acting redundantly with p110δ. This study highlights the relevance of PIP3 biosensors in establishing the dynamics, mechanisms and roles of maternal PI3K signaling during mammalian oogenesis.</p>\",\"PeriodicalId\":11375,\"journal\":{\"name\":\"Development\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/dev.204398\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204398","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

PI3K/Akt通路被认为调控哺乳动物卵子发生的关键步骤,如卵泡激活过程中休眠卵母细胞的唤醒、减数分裂恢复和卵母细胞成熟。然而,支持证据是间接的,因为卵母细胞PI3K的激活从未被正式证明,并且所涉及的PI3K亚型尚未被揭示。在这里,我们使用PIP3荧光生物传感器来表征小鼠卵母细胞中PI3K的动态,并通过条件遗传消融来研究PI3K异构体p110α的贡献。前期卵母细胞显示基线PI3K/Akt激活,添加Kit配体(KitL)可进一步刺激PI3K/Akt激活。与之前的报道相反,母体PI3K被证明对卵母细胞的体外成熟是必不可少的,但它是早期胚胎中PIP3合成所必需的。我们进一步证明卵母细胞p110α对卵子发生和女性生育不是必需的。因此,我们的数据表明KitL激活了卵母细胞中PIP3合成的p110δ异构体。相比之下,早期胚胎中组成性PIP3的合成是通过母体p110α与p110δ的冗余作用来实现的。本研究强调了PIP3生物传感器在建立哺乳动物卵子发生过程中母体PI3K信号传导的动力学、机制和作用中的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distinct requirements for PI3K isoforms p110α and p110δ for PIP3 synthesis in mouse oocytes and early embryos.

The phosphoinositide 3-kinase (PI3K)/Akt pathway is thought to regulate key steps of mammalian oogenesis, such as dormant oocyte awakening during follicular activation, meiotic resumption and oocyte maturation. Supporting evidence is, however, indirect, as oocyte PI3K activation has never been formally demonstrated, and the PI3K isoforms involved have not been revealed. Here, we employed fluorescent PIP3 biosensors to characterize PI3K dynamics in mouse oocytes and we investigated the contribution of the PI3K isoform p110α by conditional genetic ablation. Prophase oocytes showed baseline PI3K/Akt activation that could be further stimulated by adding Kit ligand. Contrary to previous reports, maternal PI3K proved dispensable for oocyte maturation in vitro, yet it was required for PIP3 synthesis in early embryos. We further show that oocyte p110α is not essential for oogenesis and female fertility. Accordingly, our data suggest that Kit ligand activates isoform p110δ for PIP3 synthesis in oocytes. In contrast, constitutive PIP3 synthesis in early embryos is achieved by maternal p110α acting redundantly with p110δ. This study highlights the relevance of PIP3 biosensors in establishing the dynamics, mechanisms and roles of maternal PI3K signaling during mammalian oogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Development
Development 生物-发育生物学
CiteScore
6.70
自引率
4.30%
发文量
433
审稿时长
3 months
期刊介绍: Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community. Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication. To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信