Zhengxin Suo, Yingcan Xu, Along Zhang, Ye Cao, Jiaxin Liu, Hong Wang, Rui Zhong
{"title":"应用富血小板血浆溶胞物结合透明质酸微针治疗脱发。","authors":"Zhengxin Suo, Yingcan Xu, Along Zhang, Ye Cao, Jiaxin Liu, Hong Wang, Rui Zhong","doi":"10.1007/s13346-025-01816-w","DOIUrl":null,"url":null,"abstract":"<p><p>Androgenetic alopecia (AGA) continues to pose a significant challenge due to the paucity of effective therapeutic options. Upon lysis, platelet-rich plasma (PRP) releases numerous growth factors (GFs), which facilitate tissue reconstruction and hair regeneration. However, concerns such as infection, bleeding, local erythema, and patient anxiety associated with injections have substantially diminished patient acceptance. To address these issues, we developed a microneedle (MN) system loaded with PRP lysate (PL), termed PL-MN, designed to deliver GFs transdermal to sites of hair loss without inducing significant discomfort. The PL-MN not only exhibits a well-defined needle structure but also demonstrates excellent in vivo penetration and external transdermal efficacy. Upon skin penetration, the needle matrix rapidly dissolves, releasing GFs directly to the target site. In animal tests, the PL-MN shows synergistic effects by orchestrating an upregulation in the expression of Ki67 and CD31, which collectively foster cell proliferation and migration, thereby facilitating the expedited progression of hair follicles (HFs) into the anagen phase and promoting peripheral angiogenesis. Compared with minoxidil, the first-line clinical drug for treating AGA (administered once per day, 20 times in total), the PL-loaded MN could induce hair regeneration in mice with a lower frequency of administration (once every 3 days, 5 times in total). Consequently, such a safe and GFs-releasing MNs patch shows great potential for clinical AGA treatment.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of platelet-rich plasma lysate combined with hyaluronic acid microneedles for the treatment of alopecia.\",\"authors\":\"Zhengxin Suo, Yingcan Xu, Along Zhang, Ye Cao, Jiaxin Liu, Hong Wang, Rui Zhong\",\"doi\":\"10.1007/s13346-025-01816-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Androgenetic alopecia (AGA) continues to pose a significant challenge due to the paucity of effective therapeutic options. Upon lysis, platelet-rich plasma (PRP) releases numerous growth factors (GFs), which facilitate tissue reconstruction and hair regeneration. However, concerns such as infection, bleeding, local erythema, and patient anxiety associated with injections have substantially diminished patient acceptance. To address these issues, we developed a microneedle (MN) system loaded with PRP lysate (PL), termed PL-MN, designed to deliver GFs transdermal to sites of hair loss without inducing significant discomfort. The PL-MN not only exhibits a well-defined needle structure but also demonstrates excellent in vivo penetration and external transdermal efficacy. Upon skin penetration, the needle matrix rapidly dissolves, releasing GFs directly to the target site. In animal tests, the PL-MN shows synergistic effects by orchestrating an upregulation in the expression of Ki67 and CD31, which collectively foster cell proliferation and migration, thereby facilitating the expedited progression of hair follicles (HFs) into the anagen phase and promoting peripheral angiogenesis. Compared with minoxidil, the first-line clinical drug for treating AGA (administered once per day, 20 times in total), the PL-loaded MN could induce hair regeneration in mice with a lower frequency of administration (once every 3 days, 5 times in total). Consequently, such a safe and GFs-releasing MNs patch shows great potential for clinical AGA treatment.</p>\",\"PeriodicalId\":11357,\"journal\":{\"name\":\"Drug Delivery and Translational Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery and Translational Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13346-025-01816-w\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-025-01816-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Application of platelet-rich plasma lysate combined with hyaluronic acid microneedles for the treatment of alopecia.
Androgenetic alopecia (AGA) continues to pose a significant challenge due to the paucity of effective therapeutic options. Upon lysis, platelet-rich plasma (PRP) releases numerous growth factors (GFs), which facilitate tissue reconstruction and hair regeneration. However, concerns such as infection, bleeding, local erythema, and patient anxiety associated with injections have substantially diminished patient acceptance. To address these issues, we developed a microneedle (MN) system loaded with PRP lysate (PL), termed PL-MN, designed to deliver GFs transdermal to sites of hair loss without inducing significant discomfort. The PL-MN not only exhibits a well-defined needle structure but also demonstrates excellent in vivo penetration and external transdermal efficacy. Upon skin penetration, the needle matrix rapidly dissolves, releasing GFs directly to the target site. In animal tests, the PL-MN shows synergistic effects by orchestrating an upregulation in the expression of Ki67 and CD31, which collectively foster cell proliferation and migration, thereby facilitating the expedited progression of hair follicles (HFs) into the anagen phase and promoting peripheral angiogenesis. Compared with minoxidil, the first-line clinical drug for treating AGA (administered once per day, 20 times in total), the PL-loaded MN could induce hair regeneration in mice with a lower frequency of administration (once every 3 days, 5 times in total). Consequently, such a safe and GFs-releasing MNs patch shows great potential for clinical AGA treatment.
期刊介绍:
The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions.
Research focused on the following areas of translational drug delivery research will be considered for publication in the journal.
Designing and developing novel drug delivery systems, with a focus on their application to disease conditions;
Preclinical and clinical data related to drug delivery systems;
Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes
Short-term and long-term biocompatibility of drug delivery systems, host response;
Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering;
Image-guided drug therapy,
Nanomedicine;
Devices for drug delivery and drug/device combination products.
In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.