Zhongming Ma, Usha Paudel, Maria Wang, J Kevin Foskett
{"title":"CALHM1离子通道门控机制研究。","authors":"Zhongming Ma, Usha Paudel, Maria Wang, J Kevin Foskett","doi":"10.1152/ajpcell.00925.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The calcium homeostasis modulator (CALHM) proteins comprise a family of six genes, some of which have been demonstrated to function as ion channels. CALHM1, the founding member, is an extracellular Ca<sup>2+</sup>- and voltage-gated large-pore nonselective ion channel. The mechanisms by which Ca<sup>2+</sup> and voltage regulate CALHM1 channel gating are unknown. Cryo-electron microscopic structures of CALHM1 and its paralogs have provided little insight into these features, although they have suggested that the amino-termini, including an amino-terminal helix (NTH) and the first transmembrane helix (TM1), may possess significant flexibility. Here, we investigated the role of the amino-terminus in the gating regulation of human CALHM1 channels expressed in <i>Xenopus</i> oocytes. Deletion of the NTH and the proximal end of TM1 markedly reduced the voltage dependence of channel gating, whereas extracellular Ca<sup>2+</sup> retained the ability to close the channel, indicating that the amino-terminus is not the Ca<sup>2+</sup>-regulated gate. Furthermore, inhibition of channel currents by ruthenium red was independent of the presence of the amino-terminus and was mediated by effects on channel gating rather than pore block. The introduction of a cysteine residue into the proximal end of TM1 enabled complete inhibition of the channel by a cross-linking reagent under conditions in which the channel was in a closed state. Our findings indicate that although the NTH plays a role in voltage-dependent gating, it does not act as the gate itself. Instead, our results suggest that the gate in CALHM1 is formed by proximal regions of the first transmembrane domain.<b>NEW & NOTEWORTHY</b> CALHM1 is a voltage- and extracellular Ca<sup>2+</sup>-regulated large-pore ion channel that plays an essential role in taste perception. The mechanisms that regulate the opening and the closing of the channel are unknown. Here we explored the role of the amino-terminal region of the channel in gating regulation. Our data define the roles of the amino-terminus in channel gating, establishing components essential for the opening and closing of the CALHM1 channel gate.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1109-C1124"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A mechanism of CALHM1 ion channel gating.\",\"authors\":\"Zhongming Ma, Usha Paudel, Maria Wang, J Kevin Foskett\",\"doi\":\"10.1152/ajpcell.00925.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The calcium homeostasis modulator (CALHM) proteins comprise a family of six genes, some of which have been demonstrated to function as ion channels. CALHM1, the founding member, is an extracellular Ca<sup>2+</sup>- and voltage-gated large-pore nonselective ion channel. The mechanisms by which Ca<sup>2+</sup> and voltage regulate CALHM1 channel gating are unknown. Cryo-electron microscopic structures of CALHM1 and its paralogs have provided little insight into these features, although they have suggested that the amino-termini, including an amino-terminal helix (NTH) and the first transmembrane helix (TM1), may possess significant flexibility. Here, we investigated the role of the amino-terminus in the gating regulation of human CALHM1 channels expressed in <i>Xenopus</i> oocytes. Deletion of the NTH and the proximal end of TM1 markedly reduced the voltage dependence of channel gating, whereas extracellular Ca<sup>2+</sup> retained the ability to close the channel, indicating that the amino-terminus is not the Ca<sup>2+</sup>-regulated gate. Furthermore, inhibition of channel currents by ruthenium red was independent of the presence of the amino-terminus and was mediated by effects on channel gating rather than pore block. The introduction of a cysteine residue into the proximal end of TM1 enabled complete inhibition of the channel by a cross-linking reagent under conditions in which the channel was in a closed state. Our findings indicate that although the NTH plays a role in voltage-dependent gating, it does not act as the gate itself. Instead, our results suggest that the gate in CALHM1 is formed by proximal regions of the first transmembrane domain.<b>NEW & NOTEWORTHY</b> CALHM1 is a voltage- and extracellular Ca<sup>2+</sup>-regulated large-pore ion channel that plays an essential role in taste perception. The mechanisms that regulate the opening and the closing of the channel are unknown. Here we explored the role of the amino-terminal region of the channel in gating regulation. Our data define the roles of the amino-terminus in channel gating, establishing components essential for the opening and closing of the CALHM1 channel gate.</p>\",\"PeriodicalId\":7585,\"journal\":{\"name\":\"American journal of physiology. Cell physiology\",\"volume\":\" \",\"pages\":\"C1109-C1124\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Cell physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.00925.2024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00925.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The calcium homeostasis modulator (CALHM) proteins comprise a family of six genes, some of which have been demonstrated to function as ion channels. CALHM1, the founding member, is an extracellular Ca2+- and voltage-gated large-pore nonselective ion channel. The mechanisms by which Ca2+ and voltage regulate CALHM1 channel gating are unknown. Cryo-electron microscopic structures of CALHM1 and its paralogs have provided little insight into these features, although they have suggested that the amino-termini, including an amino-terminal helix (NTH) and the first transmembrane helix (TM1), may possess significant flexibility. Here, we investigated the role of the amino-terminus in the gating regulation of human CALHM1 channels expressed in Xenopus oocytes. Deletion of the NTH and the proximal end of TM1 markedly reduced the voltage dependence of channel gating, whereas extracellular Ca2+ retained the ability to close the channel, indicating that the amino-terminus is not the Ca2+-regulated gate. Furthermore, inhibition of channel currents by ruthenium red was independent of the presence of the amino-terminus and was mediated by effects on channel gating rather than pore block. The introduction of a cysteine residue into the proximal end of TM1 enabled complete inhibition of the channel by a cross-linking reagent under conditions in which the channel was in a closed state. Our findings indicate that although the NTH plays a role in voltage-dependent gating, it does not act as the gate itself. Instead, our results suggest that the gate in CALHM1 is formed by proximal regions of the first transmembrane domain.NEW & NOTEWORTHY CALHM1 is a voltage- and extracellular Ca2+-regulated large-pore ion channel that plays an essential role in taste perception. The mechanisms that regulate the opening and the closing of the channel are unknown. Here we explored the role of the amino-terminal region of the channel in gating regulation. Our data define the roles of the amino-terminus in channel gating, establishing components essential for the opening and closing of the CALHM1 channel gate.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.