光激发C60分子的超快非绝热电子弛豫动力学。

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2025-03-06 Epub Date: 2025-02-20 DOI:10.1021/acs.jpca.4c06109
Esam Ali, Mohamed El-Amine Madjet, Ruma De, Matthew B Wholey, Thomas Frauenheim, Himadri S Chakraborty
{"title":"光激发C60分子的超快非绝热电子弛豫动力学。","authors":"Esam Ali, Mohamed El-Amine Madjet, Ruma De, Matthew B Wholey, Thomas Frauenheim, Himadri S Chakraborty","doi":"10.1021/acs.jpca.4c06109","DOIUrl":null,"url":null,"abstract":"<p><p>Fullerene molecules, being attractive for fundamental research and key building blocks in materials of energy harvesting, are important for ultrafast electron transfer studies. The nonradiative electron-relaxation dynamics in a C<sub>60</sub> molecule is investigated after chosen initial photoexcitations. The methodology includes nonadiabatic molecular simulation combined with time-dependent density functional theory and a semiclassical surface hopping approach. Results treating the exchange-correlation by using hybrid functionals, Becke three-parameter Lee-Yang-Parr (B3LYP) and Perdew-Burke-Ernzerhof (PBE0), are presented. Both approaches produce similar unoccupied band structures in the ground state that qualitatively agree with our many-electron excited state calculation. The model-dependent differences in the ultrafast population dynamics, including the transient entrapment of the population, are studied systematically. The trend of the results demonstrates a universal dependence on the structure of the unoccupied band offering a spectroscopic route to probe the structure. Predictions can be assessed by comparison with ultrafast transient absorption or time-resolved photoelectron spectroscopy measurements. By selectively comparing with inexpensive nonempirical PBE results, the study facilitates method optimization for future studies of technologically important and larger fullerene complexes.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"2123-2132"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891888/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ultrafast Nonadiabatic Electron Relaxation Dynamics in Photoexcited C<sub>60</sub> Molecules.\",\"authors\":\"Esam Ali, Mohamed El-Amine Madjet, Ruma De, Matthew B Wholey, Thomas Frauenheim, Himadri S Chakraborty\",\"doi\":\"10.1021/acs.jpca.4c06109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fullerene molecules, being attractive for fundamental research and key building blocks in materials of energy harvesting, are important for ultrafast electron transfer studies. The nonradiative electron-relaxation dynamics in a C<sub>60</sub> molecule is investigated after chosen initial photoexcitations. The methodology includes nonadiabatic molecular simulation combined with time-dependent density functional theory and a semiclassical surface hopping approach. Results treating the exchange-correlation by using hybrid functionals, Becke three-parameter Lee-Yang-Parr (B3LYP) and Perdew-Burke-Ernzerhof (PBE0), are presented. Both approaches produce similar unoccupied band structures in the ground state that qualitatively agree with our many-electron excited state calculation. The model-dependent differences in the ultrafast population dynamics, including the transient entrapment of the population, are studied systematically. The trend of the results demonstrates a universal dependence on the structure of the unoccupied band offering a spectroscopic route to probe the structure. Predictions can be assessed by comparison with ultrafast transient absorption or time-resolved photoelectron spectroscopy measurements. By selectively comparing with inexpensive nonempirical PBE results, the study facilitates method optimization for future studies of technologically important and larger fullerene complexes.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\" \",\"pages\":\"2123-2132\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891888/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jpca.4c06109\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.4c06109","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

富勒烯分子在超快电子转移研究中具有重要意义,是基础研究和能量收集材料的关键组成部分。在选定初始光激发后,研究了C60分子的非辐射电子弛豫动力学。该方法包括非绝热分子模拟,结合时变密度泛函理论和半经典表面跳变方法。给出了用混合泛函Becke三参数Lee-Yang-Parr (B3LYP)和Perdew-Burke-Ernzerhof (PBE0)处理交换相关性的结果。这两种方法在基态中产生类似的未占据带结构,这在质量上与我们的多电子激发态计算一致。系统地研究了超快种群动力学中的模型依赖差异,包括种群的瞬态捕获。结果的趋势表明了对空带结构的普遍依赖,为探测结构提供了光谱途径。预测可以通过与超快瞬态吸收或时间分辨光电子能谱测量的比较来评估。通过选择性地与廉价的非经验PBE结果进行比较,该研究有助于未来研究技术上重要的更大的富勒烯配合物的方法优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrafast Nonadiabatic Electron Relaxation Dynamics in Photoexcited C<sub>60</sub> Molecules.

Ultrafast Nonadiabatic Electron Relaxation Dynamics in Photoexcited C<sub>60</sub> Molecules.

Ultrafast Nonadiabatic Electron Relaxation Dynamics in Photoexcited C<sub>60</sub> Molecules.

Ultrafast Nonadiabatic Electron Relaxation Dynamics in Photoexcited C60 Molecules.

Fullerene molecules, being attractive for fundamental research and key building blocks in materials of energy harvesting, are important for ultrafast electron transfer studies. The nonradiative electron-relaxation dynamics in a C60 molecule is investigated after chosen initial photoexcitations. The methodology includes nonadiabatic molecular simulation combined with time-dependent density functional theory and a semiclassical surface hopping approach. Results treating the exchange-correlation by using hybrid functionals, Becke three-parameter Lee-Yang-Parr (B3LYP) and Perdew-Burke-Ernzerhof (PBE0), are presented. Both approaches produce similar unoccupied band structures in the ground state that qualitatively agree with our many-electron excited state calculation. The model-dependent differences in the ultrafast population dynamics, including the transient entrapment of the population, are studied systematically. The trend of the results demonstrates a universal dependence on the structure of the unoccupied band offering a spectroscopic route to probe the structure. Predictions can be assessed by comparison with ultrafast transient absorption or time-resolved photoelectron spectroscopy measurements. By selectively comparing with inexpensive nonempirical PBE results, the study facilitates method optimization for future studies of technologically important and larger fullerene complexes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信