Ching-Hsiang Fan , Elaine Huang , Wei-Chen Lo , Chih-Kuang Yeh
{"title":"超声空化增强超声涡旋镊子诱导微泡聚类给药。","authors":"Ching-Hsiang Fan , Elaine Huang , Wei-Chen Lo , Chih-Kuang Yeh","doi":"10.1016/j.ultsonch.2025.107273","DOIUrl":null,"url":null,"abstract":"<div><div>The application of acoustic vortex tweezers (AVT) in conjunction with ultrasound (US) cavitation pulses presents a promising noninvasive approach for the delivery of high concentrations of therapeutic agents. This methodology facilitates the aggregation of drug-loaded microbubbles (MBs) into clusters, which are subsequently destroyed to release their contents. Nevertheless, prior investigations have not thoroughly examined the resonance frequency and cavitation activity of MB clusters, critical factors that could enhance the efficiency of payload release. Theoretically, the resonance frequency of an MB cluster is expected to approximate that of a single large bubble of comparable size, thus being significantly lower than that of the individual MBs constituting the cluster. Accordingly, this study aims to optimize the release of payloads from AVT-trapped MB clusters, which measure 15 to 40 μm (mean radius: 24.7 μm) in size, by employing US at their resonance frequency of 100 kHz, henceforth referred to as “on-resonance US.” In this investigation, MBs were loaded with the model drug DiI, resulting in the formation of DiI-MBs, which were then clustered utilizing AVT. On-resonance US excitation was subsequently applied to enhance the release of the drug payload. The dimensional characteristics of the DiI-MB clusters formed via 3-MHz AVT were measured to determine the range of resonance frequencies. Concurrent optical and acoustic analyses were conducted to evaluate the size, oscillation dynamics, and cavitation activity of the DiI-MB clusters in response to on-resonance US excitation. Additionally, the payload release from these clusters was quantitatively assessed. Our results indicate that significant oscillations of individual DiI-MB clusters commenced at a pressure of 44 kPa during 100 kHz US excitation. Further quantitative experiments demonstrated that the synergistic combination of AVT and 100-kHz US at 65 kPa significantly enhanced the payload release efficiency to 93 %. This efficiency surpassed that achieved with either method independently, with increases of 1.8-fold relative to AVT alone and 2.3-fold compared to 100-kHz US alone. The acoustic analyses revealed the onset of inertial cavitation at 44 kPa, which strongly correlated with payload release efficiency (R<sup>2</sup> = 0.78). These findings underscore the potential of our proposed methodology in monitoring and enhancing the efficiency of drug release.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"114 ","pages":"Article 107273"},"PeriodicalIF":8.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasound-cavitation-enhanced drug delivery via microbubble clustering induced by acoustic vortex tweezers\",\"authors\":\"Ching-Hsiang Fan , Elaine Huang , Wei-Chen Lo , Chih-Kuang Yeh\",\"doi\":\"10.1016/j.ultsonch.2025.107273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The application of acoustic vortex tweezers (AVT) in conjunction with ultrasound (US) cavitation pulses presents a promising noninvasive approach for the delivery of high concentrations of therapeutic agents. This methodology facilitates the aggregation of drug-loaded microbubbles (MBs) into clusters, which are subsequently destroyed to release their contents. Nevertheless, prior investigations have not thoroughly examined the resonance frequency and cavitation activity of MB clusters, critical factors that could enhance the efficiency of payload release. Theoretically, the resonance frequency of an MB cluster is expected to approximate that of a single large bubble of comparable size, thus being significantly lower than that of the individual MBs constituting the cluster. Accordingly, this study aims to optimize the release of payloads from AVT-trapped MB clusters, which measure 15 to 40 μm (mean radius: 24.7 μm) in size, by employing US at their resonance frequency of 100 kHz, henceforth referred to as “on-resonance US.” In this investigation, MBs were loaded with the model drug DiI, resulting in the formation of DiI-MBs, which were then clustered utilizing AVT. On-resonance US excitation was subsequently applied to enhance the release of the drug payload. The dimensional characteristics of the DiI-MB clusters formed via 3-MHz AVT were measured to determine the range of resonance frequencies. Concurrent optical and acoustic analyses were conducted to evaluate the size, oscillation dynamics, and cavitation activity of the DiI-MB clusters in response to on-resonance US excitation. Additionally, the payload release from these clusters was quantitatively assessed. Our results indicate that significant oscillations of individual DiI-MB clusters commenced at a pressure of 44 kPa during 100 kHz US excitation. Further quantitative experiments demonstrated that the synergistic combination of AVT and 100-kHz US at 65 kPa significantly enhanced the payload release efficiency to 93 %. This efficiency surpassed that achieved with either method independently, with increases of 1.8-fold relative to AVT alone and 2.3-fold compared to 100-kHz US alone. The acoustic analyses revealed the onset of inertial cavitation at 44 kPa, which strongly correlated with payload release efficiency (R<sup>2</sup> = 0.78). These findings underscore the potential of our proposed methodology in monitoring and enhancing the efficiency of drug release.</div></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"114 \",\"pages\":\"Article 107273\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350417725000525\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417725000525","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Ultrasound-cavitation-enhanced drug delivery via microbubble clustering induced by acoustic vortex tweezers
The application of acoustic vortex tweezers (AVT) in conjunction with ultrasound (US) cavitation pulses presents a promising noninvasive approach for the delivery of high concentrations of therapeutic agents. This methodology facilitates the aggregation of drug-loaded microbubbles (MBs) into clusters, which are subsequently destroyed to release their contents. Nevertheless, prior investigations have not thoroughly examined the resonance frequency and cavitation activity of MB clusters, critical factors that could enhance the efficiency of payload release. Theoretically, the resonance frequency of an MB cluster is expected to approximate that of a single large bubble of comparable size, thus being significantly lower than that of the individual MBs constituting the cluster. Accordingly, this study aims to optimize the release of payloads from AVT-trapped MB clusters, which measure 15 to 40 μm (mean radius: 24.7 μm) in size, by employing US at their resonance frequency of 100 kHz, henceforth referred to as “on-resonance US.” In this investigation, MBs were loaded with the model drug DiI, resulting in the formation of DiI-MBs, which were then clustered utilizing AVT. On-resonance US excitation was subsequently applied to enhance the release of the drug payload. The dimensional characteristics of the DiI-MB clusters formed via 3-MHz AVT were measured to determine the range of resonance frequencies. Concurrent optical and acoustic analyses were conducted to evaluate the size, oscillation dynamics, and cavitation activity of the DiI-MB clusters in response to on-resonance US excitation. Additionally, the payload release from these clusters was quantitatively assessed. Our results indicate that significant oscillations of individual DiI-MB clusters commenced at a pressure of 44 kPa during 100 kHz US excitation. Further quantitative experiments demonstrated that the synergistic combination of AVT and 100-kHz US at 65 kPa significantly enhanced the payload release efficiency to 93 %. This efficiency surpassed that achieved with either method independently, with increases of 1.8-fold relative to AVT alone and 2.3-fold compared to 100-kHz US alone. The acoustic analyses revealed the onset of inertial cavitation at 44 kPa, which strongly correlated with payload release efficiency (R2 = 0.78). These findings underscore the potential of our proposed methodology in monitoring and enhancing the efficiency of drug release.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.