螺旋结构域突变导致PI3Kα构象动力学的理解:来自马尔可夫状态模型分析的见解。

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED
Vinod Jani, Uddhavesh Sonavane, Sangeeta Sawant
{"title":"螺旋结构域突变导致PI3Kα构象动力学的理解:来自马尔可夫状态模型分析的见解。","authors":"Vinod Jani, Uddhavesh Sonavane, Sangeeta Sawant","doi":"10.1007/s11030-025-11138-1","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphoinositide 3-kinases (PI3Ks) phosphorylate phosphoinositides on the membrane, which act as secondary signals for various cellular processes. PI3Kα, a heterodimer of the p110α catalytic subunit and the p85α regulatory subunit, is activated by growth factor receptors or mutations. Among these mutations, E545K present in the helical domain is strongly associated with cancer, and is known to disrupt interactions between the regulatory and catalytic subunits, leading to its constitutive activation. However, while the mutation's role in disrupting autoinhibition is well documented, the molecular mechanisms linking this mutation in the helical domain to the structural changes in the kinase domain remain poorly understood. This study aims to understand the conformational events triggered by the E545K mutation, elucidate how these changes propagate from the helical domain to the kinase domain, and identify crucial residues involved in the activation process. Molecular dynamics (MD) simulations combined with Markov state modeling (MSM) were employed to explore the conformational landscapes of both the wild-type and mutant systems. Structural and energetic analyses, including Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations, revealed that the E545K mutation significantly reduces the binding affinity between the regulatory and catalytic subunits. The mutation was found to induce a sliding motion of the regulatory subunit along the catalytic subunit, leading to the disruption of key salt-bridges between these domains. This disruption releases the inhibitory effect of the regulatory subunit, resulting in increased domain motion, particularly in the adaptor-binding domain (ABD). Enhanced flexibility in the ABD, helical, and C2 domains facilitates the rearrangement of the two lobes of kinase domain, thereby promoting activation. Additionally, the mutation appears to enhance PI3Kα's membrane affinity via the Ras-binding domain (RBD). Network analysis helped to identify key residues that may involve in allosteric signaling pathways, providing insights into the communication between domains. Druggable pockets in the metastable states were predicted followed by its docking with a PI3K inhibitor library. Docking studies revealed the crucial residues that may be participating in inhibitor binding. The identification of residues and regions involved in activation mechanisms using MSM helped to reveal the conformational events and the knowledge on probable allosteric pockets, which may be helpful in designing better therapeutics.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the conformational dynamics of PI3Kα due to helical domain mutations: insights from Markov state model analysis.\",\"authors\":\"Vinod Jani, Uddhavesh Sonavane, Sangeeta Sawant\",\"doi\":\"10.1007/s11030-025-11138-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phosphoinositide 3-kinases (PI3Ks) phosphorylate phosphoinositides on the membrane, which act as secondary signals for various cellular processes. PI3Kα, a heterodimer of the p110α catalytic subunit and the p85α regulatory subunit, is activated by growth factor receptors or mutations. Among these mutations, E545K present in the helical domain is strongly associated with cancer, and is known to disrupt interactions between the regulatory and catalytic subunits, leading to its constitutive activation. However, while the mutation's role in disrupting autoinhibition is well documented, the molecular mechanisms linking this mutation in the helical domain to the structural changes in the kinase domain remain poorly understood. This study aims to understand the conformational events triggered by the E545K mutation, elucidate how these changes propagate from the helical domain to the kinase domain, and identify crucial residues involved in the activation process. Molecular dynamics (MD) simulations combined with Markov state modeling (MSM) were employed to explore the conformational landscapes of both the wild-type and mutant systems. Structural and energetic analyses, including Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations, revealed that the E545K mutation significantly reduces the binding affinity between the regulatory and catalytic subunits. The mutation was found to induce a sliding motion of the regulatory subunit along the catalytic subunit, leading to the disruption of key salt-bridges between these domains. This disruption releases the inhibitory effect of the regulatory subunit, resulting in increased domain motion, particularly in the adaptor-binding domain (ABD). Enhanced flexibility in the ABD, helical, and C2 domains facilitates the rearrangement of the two lobes of kinase domain, thereby promoting activation. Additionally, the mutation appears to enhance PI3Kα's membrane affinity via the Ras-binding domain (RBD). Network analysis helped to identify key residues that may involve in allosteric signaling pathways, providing insights into the communication between domains. Druggable pockets in the metastable states were predicted followed by its docking with a PI3K inhibitor library. Docking studies revealed the crucial residues that may be participating in inhibitor binding. The identification of residues and regions involved in activation mechanisms using MSM helped to reveal the conformational events and the knowledge on probable allosteric pockets, which may be helpful in designing better therapeutics.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-025-11138-1\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11138-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

磷酸肌肽3激酶(PI3Ks)磷酸化膜上的磷酸肌肽,作为各种细胞过程的次级信号。PI3Kα是p110α催化亚基和p85α调控亚基的异源二聚体,可被生长因子受体或突变激活。在这些突变中,存在于螺旋结构域的E545K与癌症密切相关,并且已知会破坏调节亚基和催化亚基之间的相互作用,导致其组成性激活。然而,虽然突变在破坏自抑制中的作用已被充分记录,但将螺旋结构域突变与激酶结构域结构变化联系起来的分子机制仍然知之甚少。本研究旨在了解E545K突变引发的构象事件,阐明这些变化如何从螺旋结构域传播到激酶结构域,并确定参与激活过程的关键残基。利用分子动力学(MD)模拟和马尔可夫状态模型(MSM)研究了野生型和突变型系统的构象景观。结构和能量分析,包括分子力学泊松-玻尔兹曼表面积(MM-PBSA)计算,显示E545K突变显著降低了调控亚基和催化亚基之间的结合亲和力。发现突变诱导调控亚基沿着催化亚基滑动,导致这些结构域之间的关键盐桥断裂。这种破坏释放了调控亚基的抑制作用,导致结构域运动增加,特别是在适配器结合结构域(ABD)中。ABD、螺旋结构域和C2结构域的灵活性增强,促进了激酶结构域两个叶的重排,从而促进了活化。此外,该突变似乎通过ras结合结构域(RBD)增强了PI3Kα的膜亲和力。网络分析有助于识别可能涉及变构信号通路的关键残基,为结构域之间的通信提供见解。在与PI3K抑制剂文库对接之后,预测了亚稳态的可药物口袋。对接研究揭示了可能参与抑制剂结合的关键残基。利用MSM识别参与激活机制的残基和区域有助于揭示构象事件和对可能的变构口袋的了解,这可能有助于设计更好的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Understanding the conformational dynamics of PI3Kα due to helical domain mutations: insights from Markov state model analysis.

Phosphoinositide 3-kinases (PI3Ks) phosphorylate phosphoinositides on the membrane, which act as secondary signals for various cellular processes. PI3Kα, a heterodimer of the p110α catalytic subunit and the p85α regulatory subunit, is activated by growth factor receptors or mutations. Among these mutations, E545K present in the helical domain is strongly associated with cancer, and is known to disrupt interactions between the regulatory and catalytic subunits, leading to its constitutive activation. However, while the mutation's role in disrupting autoinhibition is well documented, the molecular mechanisms linking this mutation in the helical domain to the structural changes in the kinase domain remain poorly understood. This study aims to understand the conformational events triggered by the E545K mutation, elucidate how these changes propagate from the helical domain to the kinase domain, and identify crucial residues involved in the activation process. Molecular dynamics (MD) simulations combined with Markov state modeling (MSM) were employed to explore the conformational landscapes of both the wild-type and mutant systems. Structural and energetic analyses, including Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations, revealed that the E545K mutation significantly reduces the binding affinity between the regulatory and catalytic subunits. The mutation was found to induce a sliding motion of the regulatory subunit along the catalytic subunit, leading to the disruption of key salt-bridges between these domains. This disruption releases the inhibitory effect of the regulatory subunit, resulting in increased domain motion, particularly in the adaptor-binding domain (ABD). Enhanced flexibility in the ABD, helical, and C2 domains facilitates the rearrangement of the two lobes of kinase domain, thereby promoting activation. Additionally, the mutation appears to enhance PI3Kα's membrane affinity via the Ras-binding domain (RBD). Network analysis helped to identify key residues that may involve in allosteric signaling pathways, providing insights into the communication between domains. Druggable pockets in the metastable states were predicted followed by its docking with a PI3K inhibitor library. Docking studies revealed the crucial residues that may be participating in inhibitor binding. The identification of residues and regions involved in activation mechanisms using MSM helped to reveal the conformational events and the knowledge on probable allosteric pockets, which may be helpful in designing better therapeutics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信