Aga Basit Iqbal, Tariq Ahmad Masoodi, Ajaz A Bhat, Muzafar A Macha, Assif Assad, Syed Zubair Ahmad Shah
{"title":"可解释的人工智能驱动的 APE1 抑制剂预测:利用机器学习模型和特征重要性分析加强癌症治疗。","authors":"Aga Basit Iqbal, Tariq Ahmad Masoodi, Ajaz A Bhat, Muzafar A Macha, Assif Assad, Syed Zubair Ahmad Shah","doi":"10.1007/s11030-025-11133-6","DOIUrl":null,"url":null,"abstract":"<p><p>The viability of cells and the integrity of the genome depend on the detection and repair of damaged DNA through intricate mechanisms. Cancer treatment employs chemotherapy or radiation therapy to eliminate neoplastic cells by causing substantial damage to their DNA. In many cases, improved DNA repair mechanisms lead to resistance to these medicines; therefore, it is essential to expand efforts to develop drugs that can sensitise cells to these treatments by inhibiting the DNA repair process. Multiple studies have demonstrated a correlation between the overexpression of Apurinic/Apyrimidinic Endonuclease (APE1), the primary mammalian enzyme responsible for excising apurinic or apyrimidinic sites in DNA, and the resistance of cells to cancer therapies; in contrast, APE1 downregulation increases cellular susceptibility to DNA-damaging agents. Thus, the effectiveness of existing therapies can be improved by promoting the targeted sensitization of cancer cells while protecting healthy cells. The current study aims to employ explainable artificial intelligence (XAI) to enhance the accuracy and reliability of machine learning models for the prediction of APE1 inhibitors. Various ML-based regression models are employed to predict the pIC50 value of different medicines. Bayesian optimization and the Permutation Feature Importance (PFI) approach are employed to determine the best hyperparameters of machine learning models and to discover the most significant features for recognizing drug candidates that target APE1 enzymes, respectively. To acquire comprehensive elucidations for the predictive models in our research, two XAI methodologies, namely SHAP and LIME, are used. The SHAP analysis reveals that the features 'C1SP2' and 'ASP-2' are essential in influencing the model's predictions. The SHAP values demonstrate variability for features such as 'maxHBint2' and 'GATS1s,' signifying that their impact is dependent on specific instances within the dataset. The LIME study corroborates these findings, demonstrating that 'C1SP2' and 'ASP-2' are the most significant positive contributors, whereas features like 'SHCHnX,' 'nHdCH2,' and 'GATS1s' result in a decrease in the predicted values. Due to the limited sample size of the APE1 dataset, direct training on this dataset posed challenges in model generalization and reliability. To overcome this limitation, the BACE-1 dataset is leveraged for model training, enabling the ML models to learn from a more extensive and diverse chemical space. Among the tested algorithms, XGBoost demonstrated superior predictive performance, achieving R<sup>2</sup> = 0.890, MAE = 0.186, and RMSE = 0.245, significantly surpassing state-of-the-art methods, such as LightGBM and QSAR-ML, which attained R<sup>2</sup> scores of 0.798 and 0.630, respectively. These results highlight the robustness of our approach, demonstrating its enhanced generalization capability and superior predictive accuracy compared to existing methodologies.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable AI-driven prediction of APE1 inhibitors: enhancing cancer therapy with machine learning models and feature importance analysis.\",\"authors\":\"Aga Basit Iqbal, Tariq Ahmad Masoodi, Ajaz A Bhat, Muzafar A Macha, Assif Assad, Syed Zubair Ahmad Shah\",\"doi\":\"10.1007/s11030-025-11133-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The viability of cells and the integrity of the genome depend on the detection and repair of damaged DNA through intricate mechanisms. Cancer treatment employs chemotherapy or radiation therapy to eliminate neoplastic cells by causing substantial damage to their DNA. In many cases, improved DNA repair mechanisms lead to resistance to these medicines; therefore, it is essential to expand efforts to develop drugs that can sensitise cells to these treatments by inhibiting the DNA repair process. Multiple studies have demonstrated a correlation between the overexpression of Apurinic/Apyrimidinic Endonuclease (APE1), the primary mammalian enzyme responsible for excising apurinic or apyrimidinic sites in DNA, and the resistance of cells to cancer therapies; in contrast, APE1 downregulation increases cellular susceptibility to DNA-damaging agents. Thus, the effectiveness of existing therapies can be improved by promoting the targeted sensitization of cancer cells while protecting healthy cells. The current study aims to employ explainable artificial intelligence (XAI) to enhance the accuracy and reliability of machine learning models for the prediction of APE1 inhibitors. Various ML-based regression models are employed to predict the pIC50 value of different medicines. Bayesian optimization and the Permutation Feature Importance (PFI) approach are employed to determine the best hyperparameters of machine learning models and to discover the most significant features for recognizing drug candidates that target APE1 enzymes, respectively. To acquire comprehensive elucidations for the predictive models in our research, two XAI methodologies, namely SHAP and LIME, are used. The SHAP analysis reveals that the features 'C1SP2' and 'ASP-2' are essential in influencing the model's predictions. The SHAP values demonstrate variability for features such as 'maxHBint2' and 'GATS1s,' signifying that their impact is dependent on specific instances within the dataset. The LIME study corroborates these findings, demonstrating that 'C1SP2' and 'ASP-2' are the most significant positive contributors, whereas features like 'SHCHnX,' 'nHdCH2,' and 'GATS1s' result in a decrease in the predicted values. Due to the limited sample size of the APE1 dataset, direct training on this dataset posed challenges in model generalization and reliability. To overcome this limitation, the BACE-1 dataset is leveraged for model training, enabling the ML models to learn from a more extensive and diverse chemical space. Among the tested algorithms, XGBoost demonstrated superior predictive performance, achieving R<sup>2</sup> = 0.890, MAE = 0.186, and RMSE = 0.245, significantly surpassing state-of-the-art methods, such as LightGBM and QSAR-ML, which attained R<sup>2</sup> scores of 0.798 and 0.630, respectively. These results highlight the robustness of our approach, demonstrating its enhanced generalization capability and superior predictive accuracy compared to existing methodologies.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-025-11133-6\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11133-6","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Explainable AI-driven prediction of APE1 inhibitors: enhancing cancer therapy with machine learning models and feature importance analysis.
The viability of cells and the integrity of the genome depend on the detection and repair of damaged DNA through intricate mechanisms. Cancer treatment employs chemotherapy or radiation therapy to eliminate neoplastic cells by causing substantial damage to their DNA. In many cases, improved DNA repair mechanisms lead to resistance to these medicines; therefore, it is essential to expand efforts to develop drugs that can sensitise cells to these treatments by inhibiting the DNA repair process. Multiple studies have demonstrated a correlation between the overexpression of Apurinic/Apyrimidinic Endonuclease (APE1), the primary mammalian enzyme responsible for excising apurinic or apyrimidinic sites in DNA, and the resistance of cells to cancer therapies; in contrast, APE1 downregulation increases cellular susceptibility to DNA-damaging agents. Thus, the effectiveness of existing therapies can be improved by promoting the targeted sensitization of cancer cells while protecting healthy cells. The current study aims to employ explainable artificial intelligence (XAI) to enhance the accuracy and reliability of machine learning models for the prediction of APE1 inhibitors. Various ML-based regression models are employed to predict the pIC50 value of different medicines. Bayesian optimization and the Permutation Feature Importance (PFI) approach are employed to determine the best hyperparameters of machine learning models and to discover the most significant features for recognizing drug candidates that target APE1 enzymes, respectively. To acquire comprehensive elucidations for the predictive models in our research, two XAI methodologies, namely SHAP and LIME, are used. The SHAP analysis reveals that the features 'C1SP2' and 'ASP-2' are essential in influencing the model's predictions. The SHAP values demonstrate variability for features such as 'maxHBint2' and 'GATS1s,' signifying that their impact is dependent on specific instances within the dataset. The LIME study corroborates these findings, demonstrating that 'C1SP2' and 'ASP-2' are the most significant positive contributors, whereas features like 'SHCHnX,' 'nHdCH2,' and 'GATS1s' result in a decrease in the predicted values. Due to the limited sample size of the APE1 dataset, direct training on this dataset posed challenges in model generalization and reliability. To overcome this limitation, the BACE-1 dataset is leveraged for model training, enabling the ML models to learn from a more extensive and diverse chemical space. Among the tested algorithms, XGBoost demonstrated superior predictive performance, achieving R2 = 0.890, MAE = 0.186, and RMSE = 0.245, significantly surpassing state-of-the-art methods, such as LightGBM and QSAR-ML, which attained R2 scores of 0.798 and 0.630, respectively. These results highlight the robustness of our approach, demonstrating its enhanced generalization capability and superior predictive accuracy compared to existing methodologies.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;