观测和生物地球化学模拟揭示了红海接近日落峰值的叶绿素Diel循环

IF 5.4 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Yixin Wang, Matthew R. Mazloff, Ariane Verdy, Ivana Cerovecki, Malika Kheireddine, Patrick Naylor, George Krokos, Ibrahim Hoteit
{"title":"观测和生物地球化学模拟揭示了红海接近日落峰值的叶绿素Diel循环","authors":"Yixin Wang,&nbsp;Matthew R. Mazloff,&nbsp;Ariane Verdy,&nbsp;Ivana Cerovecki,&nbsp;Malika Kheireddine,&nbsp;Patrick Naylor,&nbsp;George Krokos,&nbsp;Ibrahim Hoteit","doi":"10.1029/2024GB008226","DOIUrl":null,"url":null,"abstract":"<p>The Red Sea is an extremely warm tropical sea hosting diverse ecosystems, with marine organisms operating at the high end of their thermal tolerance. Therefore, in the context of global warming, it is increasingly important to understand the Red Sea ecosystem, including the variability of chlorophyll at different spatiotemporal scales. Using a coupled physical–biogeochemical model and in situ data, we investigate and quantify the diel cycle in Red Sea chlorophyll concentration for the first time, revealing near-sunset chlorophyll maxima at 17 ± 1 hr local time over the entire basin. This chlorophyll peak time is considerably later than those reported in most other oceans, reflecting the previously reported high irradiance and further suggesting potentially low grazing rates in the Red Sea. Model-based analyses reveal that chlorophyll diel cycle is predominantly controlled by light-driven circadian rhythm (i.e., irradiance), whereas longer-timescale (e.g., seasonal) chlorophyll variability is regulated by nutrient availability, suggesting a light-limited biological production on a diel timescale and a nutrient-limited production on a seasonal scale. The identified chlorophyll diel cycle comprises a fundamental component of the Red Sea ecology and has implications for chlorophyll remote sensing and in situ measurements. Our findings indicate that future field studies investigating phytoplankton growth and zooplankton grazing dynamics—such as phytoplankton community composition and zooplankton diel vertical migration—are still needed to further elucidate the revealed chlorophyll diel cycle in this potentially unique tropical sea.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"39 2","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GB008226","citationCount":"0","resultStr":"{\"title\":\"Observations and Biogeochemical Modeling Reveal Chlorophyll Diel Cycle With Near-Sunset Maxima in the Red Sea\",\"authors\":\"Yixin Wang,&nbsp;Matthew R. Mazloff,&nbsp;Ariane Verdy,&nbsp;Ivana Cerovecki,&nbsp;Malika Kheireddine,&nbsp;Patrick Naylor,&nbsp;George Krokos,&nbsp;Ibrahim Hoteit\",\"doi\":\"10.1029/2024GB008226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Red Sea is an extremely warm tropical sea hosting diverse ecosystems, with marine organisms operating at the high end of their thermal tolerance. Therefore, in the context of global warming, it is increasingly important to understand the Red Sea ecosystem, including the variability of chlorophyll at different spatiotemporal scales. Using a coupled physical–biogeochemical model and in situ data, we investigate and quantify the diel cycle in Red Sea chlorophyll concentration for the first time, revealing near-sunset chlorophyll maxima at 17 ± 1 hr local time over the entire basin. This chlorophyll peak time is considerably later than those reported in most other oceans, reflecting the previously reported high irradiance and further suggesting potentially low grazing rates in the Red Sea. Model-based analyses reveal that chlorophyll diel cycle is predominantly controlled by light-driven circadian rhythm (i.e., irradiance), whereas longer-timescale (e.g., seasonal) chlorophyll variability is regulated by nutrient availability, suggesting a light-limited biological production on a diel timescale and a nutrient-limited production on a seasonal scale. The identified chlorophyll diel cycle comprises a fundamental component of the Red Sea ecology and has implications for chlorophyll remote sensing and in situ measurements. Our findings indicate that future field studies investigating phytoplankton growth and zooplankton grazing dynamics—such as phytoplankton community composition and zooplankton diel vertical migration—are still needed to further elucidate the revealed chlorophyll diel cycle in this potentially unique tropical sea.</p>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":\"39 2\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GB008226\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GB008226\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GB008226","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

红海是一个非常温暖的热带海洋,拥有多种生态系统,海洋生物在其热耐受性的高端运行。因此,在全球变暖的背景下,了解红海生态系统,包括叶绿素在不同时空尺度上的变异性变得越来越重要。利用物理-生物地球化学耦合模型和现场数据,我们首次研究并量化了红海叶绿素浓度的日循环,揭示了整个盆地在当地时间17±1小时的近日落叶绿素最大值。这一叶绿素峰值时间比大多数其他海洋中报道的要晚得多,反映了先前报道的高辐照度,并进一步表明红海的潜在低放牧率。基于模型的分析表明,叶绿素昼夜循环主要受光驱动的昼夜节律(即辐照度)控制,而较长时间尺度(如季节)叶绿素变异受养分可用性调节,这表明在昼夜时间尺度上存在光限制生物生产,而在季节尺度上存在营养限制生产。已确定的叶绿素循环是红海生态的一个基本组成部分,对叶绿素遥感和原位测量具有重要意义。我们的研究结果表明,未来的浮游植物生长和浮游动物放牧动态的实地研究,如浮游植物群落组成和浮游动物diel垂直迁移,仍然需要进一步阐明这一潜在独特的热带海洋中揭示的叶绿素diel循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Observations and Biogeochemical Modeling Reveal Chlorophyll Diel Cycle With Near-Sunset Maxima in the Red Sea

Observations and Biogeochemical Modeling Reveal Chlorophyll Diel Cycle With Near-Sunset Maxima in the Red Sea

The Red Sea is an extremely warm tropical sea hosting diverse ecosystems, with marine organisms operating at the high end of their thermal tolerance. Therefore, in the context of global warming, it is increasingly important to understand the Red Sea ecosystem, including the variability of chlorophyll at different spatiotemporal scales. Using a coupled physical–biogeochemical model and in situ data, we investigate and quantify the diel cycle in Red Sea chlorophyll concentration for the first time, revealing near-sunset chlorophyll maxima at 17 ± 1 hr local time over the entire basin. This chlorophyll peak time is considerably later than those reported in most other oceans, reflecting the previously reported high irradiance and further suggesting potentially low grazing rates in the Red Sea. Model-based analyses reveal that chlorophyll diel cycle is predominantly controlled by light-driven circadian rhythm (i.e., irradiance), whereas longer-timescale (e.g., seasonal) chlorophyll variability is regulated by nutrient availability, suggesting a light-limited biological production on a diel timescale and a nutrient-limited production on a seasonal scale. The identified chlorophyll diel cycle comprises a fundamental component of the Red Sea ecology and has implications for chlorophyll remote sensing and in situ measurements. Our findings indicate that future field studies investigating phytoplankton growth and zooplankton grazing dynamics—such as phytoplankton community composition and zooplankton diel vertical migration—are still needed to further elucidate the revealed chlorophyll diel cycle in this potentially unique tropical sea.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Global Biogeochemical Cycles
Global Biogeochemical Cycles 环境科学-地球科学综合
CiteScore
8.90
自引率
7.70%
发文量
141
审稿时长
8-16 weeks
期刊介绍: Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信