Carlos Felipe Blanco, Paul Behrens, Martina Vijver, Willie Peijnenburg, Joris Quik, Stefano Cucurachi
{"title":"一个指导安全和可持续设计创新的框架","authors":"Carlos Felipe Blanco, Paul Behrens, Martina Vijver, Willie Peijnenburg, Joris Quik, Stefano Cucurachi","doi":"10.1111/jiec.13609","DOIUrl":null,"url":null,"abstract":"<p>Assessing the safety and sustainability of novel technologies while they are still in the early research and development stages is the most effective way to avoid undesired outcomes. However, the journey from idea to market is highly uncertain and involves intensive trial and error as technology developers attempt to optimize material choices and product configurations. Designs evolve quickly, and assessing their risks and impacts while numerous factors remain undetermined is challenging. The standard practice is to evaluate a limited subset of scenarios that can guide design choices. However, selecting scenarios from hundreds of undetermined factors without a systematic sensitivity screening may leave out important improvement opportunities. To provide well-informed guidance, the evaluated scenarios should be selected based on factors that are most influential to the safety and sustainability impacts of the technology. We propose an approach that accomplishes this by incorporating a wide spectrum of undetermined factors, both intrinsic and extrinsic to the technology design. The assessment models are then screened for highly-sensitive factors using global sensitivity analysis. Strategies to reduce uncertainty on highly influential factors are proposed for subsequent iterations, and the residual factors for which uncertainty cannot be further reduced yet remain influential are selected as a basis for proposed “sensitive scenarios” and improvement roadmaps. We demonstrate the framework with an emerging photovoltaics case study. Over a hundred uncertain factors are reduced to less than five which, if optimized, would substantially improve the future safety and sustainability performance of the technology as well as reduce the uncertainty around it.</p>","PeriodicalId":16050,"journal":{"name":"Journal of Industrial Ecology","volume":"29 1","pages":"47-65"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jiec.13609","citationCount":"0","resultStr":"{\"title\":\"A framework for guiding safe and sustainable-by-design innovation\",\"authors\":\"Carlos Felipe Blanco, Paul Behrens, Martina Vijver, Willie Peijnenburg, Joris Quik, Stefano Cucurachi\",\"doi\":\"10.1111/jiec.13609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Assessing the safety and sustainability of novel technologies while they are still in the early research and development stages is the most effective way to avoid undesired outcomes. However, the journey from idea to market is highly uncertain and involves intensive trial and error as technology developers attempt to optimize material choices and product configurations. Designs evolve quickly, and assessing their risks and impacts while numerous factors remain undetermined is challenging. The standard practice is to evaluate a limited subset of scenarios that can guide design choices. However, selecting scenarios from hundreds of undetermined factors without a systematic sensitivity screening may leave out important improvement opportunities. To provide well-informed guidance, the evaluated scenarios should be selected based on factors that are most influential to the safety and sustainability impacts of the technology. We propose an approach that accomplishes this by incorporating a wide spectrum of undetermined factors, both intrinsic and extrinsic to the technology design. The assessment models are then screened for highly-sensitive factors using global sensitivity analysis. Strategies to reduce uncertainty on highly influential factors are proposed for subsequent iterations, and the residual factors for which uncertainty cannot be further reduced yet remain influential are selected as a basis for proposed “sensitive scenarios” and improvement roadmaps. We demonstrate the framework with an emerging photovoltaics case study. Over a hundred uncertain factors are reduced to less than five which, if optimized, would substantially improve the future safety and sustainability performance of the technology as well as reduce the uncertainty around it.</p>\",\"PeriodicalId\":16050,\"journal\":{\"name\":\"Journal of Industrial Ecology\",\"volume\":\"29 1\",\"pages\":\"47-65\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jiec.13609\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Industrial Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jiec.13609\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Ecology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jiec.13609","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
A framework for guiding safe and sustainable-by-design innovation
Assessing the safety and sustainability of novel technologies while they are still in the early research and development stages is the most effective way to avoid undesired outcomes. However, the journey from idea to market is highly uncertain and involves intensive trial and error as technology developers attempt to optimize material choices and product configurations. Designs evolve quickly, and assessing their risks and impacts while numerous factors remain undetermined is challenging. The standard practice is to evaluate a limited subset of scenarios that can guide design choices. However, selecting scenarios from hundreds of undetermined factors without a systematic sensitivity screening may leave out important improvement opportunities. To provide well-informed guidance, the evaluated scenarios should be selected based on factors that are most influential to the safety and sustainability impacts of the technology. We propose an approach that accomplishes this by incorporating a wide spectrum of undetermined factors, both intrinsic and extrinsic to the technology design. The assessment models are then screened for highly-sensitive factors using global sensitivity analysis. Strategies to reduce uncertainty on highly influential factors are proposed for subsequent iterations, and the residual factors for which uncertainty cannot be further reduced yet remain influential are selected as a basis for proposed “sensitive scenarios” and improvement roadmaps. We demonstrate the framework with an emerging photovoltaics case study. Over a hundred uncertain factors are reduced to less than five which, if optimized, would substantially improve the future safety and sustainability performance of the technology as well as reduce the uncertainty around it.
期刊介绍:
The Journal of Industrial Ecology addresses a series of related topics:
material and energy flows studies (''industrial metabolism'')
technological change
dematerialization and decarbonization
life cycle planning, design and assessment
design for the environment
extended producer responsibility (''product stewardship'')
eco-industrial parks (''industrial symbiosis'')
product-oriented environmental policy
eco-efficiency
Journal of Industrial Ecology is open to and encourages submissions that are interdisciplinary in approach. In addition to more formal academic papers, the journal seeks to provide a forum for continuing exchange of information and opinions through contributions from scholars, environmental managers, policymakers, advocates and others involved in environmental science, management and policy.