{"title":"基于可见和近红外光谱的苹果水核检测研究进展","authors":"Tao Hu, Qingshen Sun","doi":"10.1155/jfpp/4394346","DOIUrl":null,"url":null,"abstract":"<p>Apples are one of the most widely produced fruits globally, recognized for their crisp texture, juiciness, and nutritional value. Apples affected by watercore are particularly favored by consumers for their high sugar content and unique flavor. However, during prolonged storage, watercore apples often experience metabolic disorders, making it necessary to develop a rapid, high-throughput, and effective nondestructive testing method to monitor this condition. Near-infrared (NIR) spectroscopy has gained extensive application in apple quality assessment due to its speed, low cost, and ability to measure multiple indices simultaneously. This paper reviews physiological diseases affecting apples, particularly watercore, and discusses various nondestructive testing methods. It emphasizes the current application of visible/near-infrared (Vis/NIR) spectroscopy in detecting watercore in apples. Additionally, this paper addresses the challenges and prospects of using Vis/NIR spectroscopy for watercore detection. This review is aimed at providing insights into more effective ways to manage physiological changes in apples, such as watercore.</p>","PeriodicalId":15717,"journal":{"name":"Journal of Food Processing and Preservation","volume":"2025 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/jfpp/4394346","citationCount":"0","resultStr":"{\"title\":\"Research Progress on Detection of Apple Watercore Based on Visible and Near-Infrared Spectroscopy\",\"authors\":\"Tao Hu, Qingshen Sun\",\"doi\":\"10.1155/jfpp/4394346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Apples are one of the most widely produced fruits globally, recognized for their crisp texture, juiciness, and nutritional value. Apples affected by watercore are particularly favored by consumers for their high sugar content and unique flavor. However, during prolonged storage, watercore apples often experience metabolic disorders, making it necessary to develop a rapid, high-throughput, and effective nondestructive testing method to monitor this condition. Near-infrared (NIR) spectroscopy has gained extensive application in apple quality assessment due to its speed, low cost, and ability to measure multiple indices simultaneously. This paper reviews physiological diseases affecting apples, particularly watercore, and discusses various nondestructive testing methods. It emphasizes the current application of visible/near-infrared (Vis/NIR) spectroscopy in detecting watercore in apples. Additionally, this paper addresses the challenges and prospects of using Vis/NIR spectroscopy for watercore detection. This review is aimed at providing insights into more effective ways to manage physiological changes in apples, such as watercore.</p>\",\"PeriodicalId\":15717,\"journal\":{\"name\":\"Journal of Food Processing and Preservation\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/jfpp/4394346\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Processing and Preservation\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/jfpp/4394346\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Processing and Preservation","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/jfpp/4394346","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Research Progress on Detection of Apple Watercore Based on Visible and Near-Infrared Spectroscopy
Apples are one of the most widely produced fruits globally, recognized for their crisp texture, juiciness, and nutritional value. Apples affected by watercore are particularly favored by consumers for their high sugar content and unique flavor. However, during prolonged storage, watercore apples often experience metabolic disorders, making it necessary to develop a rapid, high-throughput, and effective nondestructive testing method to monitor this condition. Near-infrared (NIR) spectroscopy has gained extensive application in apple quality assessment due to its speed, low cost, and ability to measure multiple indices simultaneously. This paper reviews physiological diseases affecting apples, particularly watercore, and discusses various nondestructive testing methods. It emphasizes the current application of visible/near-infrared (Vis/NIR) spectroscopy in detecting watercore in apples. Additionally, this paper addresses the challenges and prospects of using Vis/NIR spectroscopy for watercore detection. This review is aimed at providing insights into more effective ways to manage physiological changes in apples, such as watercore.
期刊介绍:
The journal presents readers with the latest research, knowledge, emerging technologies, and advances in food processing and preservation. Encompassing chemical, physical, quality, and engineering properties of food materials, the Journal of Food Processing and Preservation provides a balance between fundamental chemistry and engineering principles and applicable food processing and preservation technologies.
This is the only journal dedicated to publishing both fundamental and applied research relating to food processing and preservation, benefiting the research, commercial, and industrial communities. It publishes research articles directed at the safe preservation and successful consumer acceptance of unique, innovative, non-traditional international or domestic foods. In addition, the journal features important discussions of current economic and regulatory policies and their effects on the safe and quality processing and preservation of a wide array of foods.