构建丁香酚衍生双官能团环氧单体以制备具有所需性能的热固性树脂体系的简便策略

IF 2.7 3区 化学 Q2 POLYMER SCIENCE
Shujun Zhao, Yuanjian Li, Xuebin Lian, Jiehao Qu, Shengjiong Yin, Xiangdong Liu
{"title":"构建丁香酚衍生双官能团环氧单体以制备具有所需性能的热固性树脂体系的简便策略","authors":"Shujun Zhao,&nbsp;Yuanjian Li,&nbsp;Xuebin Lian,&nbsp;Jiehao Qu,&nbsp;Shengjiong Yin,&nbsp;Xiangdong Liu","doi":"10.1002/app.56657","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Designing and preparing bio-based epoxy monomers to substitute hazardous and nonrenewable bisphenol A (BPA)-type epoxide are important for the development of new epoxy resins under the concept of healthy and sustainable concept. In this work, a “green” bifunctionality epoxy monomer derived from eugenol (EGE-EP) was fabricated by epoxidation functionalization of unsaturated double bond as well as using epichlorohydrin to epoxidize phenolic hydroxyl group. The effects of different hardeners on the properties of EGE-EP were analyzed, and the E51 epoxy cured with the same hardeners was employed as a reference. The results indicate that the EGE-EP/hardeners present desired curing behavior, mechanical performances, and thermal stability which are comparable to the commercial E51/hardeners epoxy resin. Most importantly, all EP/hardeners samples exhibit a lower onset temperature compared to E51/hardeners systems reflecting a faster curing properties of the EGE-EP/hardeners mixtures. Meanwhile, an obvious improvement of char yield is found in EGE-EP/hardeners in contrast to E51/hardeners thus possessing potential for flame retardancy applications. This study proposes an innovative path to prepare bio-based epoxy monomers as an alternative to BPA-type epoxide, which is of significance for eco-friendly epoxy resins and high-value utilization of biomass.</p>\n </div>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 13","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile Strategy to Construct Eugenol-Derived Bifunctionality Epoxy Monomer for Preparation of Thermosetting Resin System With Desired Performances\",\"authors\":\"Shujun Zhao,&nbsp;Yuanjian Li,&nbsp;Xuebin Lian,&nbsp;Jiehao Qu,&nbsp;Shengjiong Yin,&nbsp;Xiangdong Liu\",\"doi\":\"10.1002/app.56657\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Designing and preparing bio-based epoxy monomers to substitute hazardous and nonrenewable bisphenol A (BPA)-type epoxide are important for the development of new epoxy resins under the concept of healthy and sustainable concept. In this work, a “green” bifunctionality epoxy monomer derived from eugenol (EGE-EP) was fabricated by epoxidation functionalization of unsaturated double bond as well as using epichlorohydrin to epoxidize phenolic hydroxyl group. The effects of different hardeners on the properties of EGE-EP were analyzed, and the E51 epoxy cured with the same hardeners was employed as a reference. The results indicate that the EGE-EP/hardeners present desired curing behavior, mechanical performances, and thermal stability which are comparable to the commercial E51/hardeners epoxy resin. Most importantly, all EP/hardeners samples exhibit a lower onset temperature compared to E51/hardeners systems reflecting a faster curing properties of the EGE-EP/hardeners mixtures. Meanwhile, an obvious improvement of char yield is found in EGE-EP/hardeners in contrast to E51/hardeners thus possessing potential for flame retardancy applications. This study proposes an innovative path to prepare bio-based epoxy monomers as an alternative to BPA-type epoxide, which is of significance for eco-friendly epoxy resins and high-value utilization of biomass.</p>\\n </div>\",\"PeriodicalId\":183,\"journal\":{\"name\":\"Journal of Applied Polymer Science\",\"volume\":\"142 13\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/app.56657\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.56657","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facile Strategy to Construct Eugenol-Derived Bifunctionality Epoxy Monomer for Preparation of Thermosetting Resin System With Desired Performances

Designing and preparing bio-based epoxy monomers to substitute hazardous and nonrenewable bisphenol A (BPA)-type epoxide are important for the development of new epoxy resins under the concept of healthy and sustainable concept. In this work, a “green” bifunctionality epoxy monomer derived from eugenol (EGE-EP) was fabricated by epoxidation functionalization of unsaturated double bond as well as using epichlorohydrin to epoxidize phenolic hydroxyl group. The effects of different hardeners on the properties of EGE-EP were analyzed, and the E51 epoxy cured with the same hardeners was employed as a reference. The results indicate that the EGE-EP/hardeners present desired curing behavior, mechanical performances, and thermal stability which are comparable to the commercial E51/hardeners epoxy resin. Most importantly, all EP/hardeners samples exhibit a lower onset temperature compared to E51/hardeners systems reflecting a faster curing properties of the EGE-EP/hardeners mixtures. Meanwhile, an obvious improvement of char yield is found in EGE-EP/hardeners in contrast to E51/hardeners thus possessing potential for flame retardancy applications. This study proposes an innovative path to prepare bio-based epoxy monomers as an alternative to BPA-type epoxide, which is of significance for eco-friendly epoxy resins and high-value utilization of biomass.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Polymer Science
Journal of Applied Polymer Science 化学-高分子科学
CiteScore
5.70
自引率
10.00%
发文量
1280
审稿时长
2.7 months
期刊介绍: The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信