高效绿色合成蔗糖衍生的二氧化硅石墨烯和碳酸盐砂复合材料去除铜(II)离子

IF 3 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
H. Omdehghiasi, A. H. Korayem, A. Yeganeh-Bakhtiary
{"title":"高效绿色合成蔗糖衍生的二氧化硅石墨烯和碳酸盐砂复合材料去除铜(II)离子","authors":"H. Omdehghiasi,&nbsp;A. H. Korayem,&nbsp;A. Yeganeh-Bakhtiary","doi":"10.1007/s13762-024-06078-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the efficacy of three important adsorbents- pure sand, a sucrose-derived graphene sand composite, and an innovative 3D sucrose-derived graphene composite using silica and carbonate sands for transforming the field of copper (II) ion removal was meticulously explored. Coating the surfaces of silica and porous carbonate sands with sucrose and subjecting them to heat treatment resulted in the formation of layered graphene on the sands. Converting these materials into 3D structures creates a cost-effective and efficient 3D graphene adsorbent with nano-porous channels. The graphene silica sand composite, boasting a thickness of 9 cm, achieved an impressive 82.4% removal rate, while the carbonate sand composite with 9 cm thick achieved an astonishing 99% removal rate due to its high specific surface area and porous structure. Among the utilized adsorbents, the 3D graphene carbonate sand composite, boasting a lower thickness of 4.5 cm and featuring an ingenious multilayered graphene coating and nanoporous channels, displayed a high efficiency of 96.4% in removing copper (II) ions, making it the most effective among all the studied adsorbents. The significant results pave the way for the development of economically viable, highly efficient, and environmentally friendly adsorbents, representing a major stride in combating copper contamination.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":589,"journal":{"name":"International Journal of Environmental Science and Technology","volume":"22 6","pages":"4335 - 4352"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly efficient green-synthesized sucrose-derived graphene silica and carbonate sand composites for copper (II) ions removal\",\"authors\":\"H. Omdehghiasi,&nbsp;A. H. Korayem,&nbsp;A. Yeganeh-Bakhtiary\",\"doi\":\"10.1007/s13762-024-06078-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, the efficacy of three important adsorbents- pure sand, a sucrose-derived graphene sand composite, and an innovative 3D sucrose-derived graphene composite using silica and carbonate sands for transforming the field of copper (II) ion removal was meticulously explored. Coating the surfaces of silica and porous carbonate sands with sucrose and subjecting them to heat treatment resulted in the formation of layered graphene on the sands. Converting these materials into 3D structures creates a cost-effective and efficient 3D graphene adsorbent with nano-porous channels. The graphene silica sand composite, boasting a thickness of 9 cm, achieved an impressive 82.4% removal rate, while the carbonate sand composite with 9 cm thick achieved an astonishing 99% removal rate due to its high specific surface area and porous structure. Among the utilized adsorbents, the 3D graphene carbonate sand composite, boasting a lower thickness of 4.5 cm and featuring an ingenious multilayered graphene coating and nanoporous channels, displayed a high efficiency of 96.4% in removing copper (II) ions, making it the most effective among all the studied adsorbents. The significant results pave the way for the development of economically viable, highly efficient, and environmentally friendly adsorbents, representing a major stride in combating copper contamination.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":589,\"journal\":{\"name\":\"International Journal of Environmental Science and Technology\",\"volume\":\"22 6\",\"pages\":\"4335 - 4352\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Environmental Science and Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13762-024-06078-6\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Science and Technology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s13762-024-06078-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们仔细探索了三种重要的吸附剂——纯砂、蔗糖衍生石墨烯复合砂以及使用二氧化硅和碳酸盐砂的创新3D蔗糖衍生石墨烯复合材料在铜(II)离子去除领域的效果。将二氧化硅和多孔碳酸盐砂表面涂上蔗糖,并对其进行热处理,从而在砂上形成层状石墨烯。将这些材料转化为3D结构,可以产生具有纳米多孔通道的经济高效的3D石墨烯吸附剂。厚度为9厘米的石墨烯硅砂复合材料的去除率达到了令人印象深刻的82.4%,而厚度为9厘米的碳酸盐砂复合材料由于其高比表面积和多孔结构,去除率达到了惊人的99%。在所使用的吸附剂中,厚度较低的3D碳酸盐石墨烯砂复合材料具有巧妙的多层石墨烯涂层和纳米孔通道,其对铜(II)离子的去除效率高达96.4%,是所有吸附剂中效果最好的。这一重大成果为开发经济上可行、高效和环境友好的吸附剂铺平了道路,代表了在对抗铜污染方面迈出的一大步。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Highly efficient green-synthesized sucrose-derived graphene silica and carbonate sand composites for copper (II) ions removal

Highly efficient green-synthesized sucrose-derived graphene silica and carbonate sand composites for copper (II) ions removal

In this study, the efficacy of three important adsorbents- pure sand, a sucrose-derived graphene sand composite, and an innovative 3D sucrose-derived graphene composite using silica and carbonate sands for transforming the field of copper (II) ion removal was meticulously explored. Coating the surfaces of silica and porous carbonate sands with sucrose and subjecting them to heat treatment resulted in the formation of layered graphene on the sands. Converting these materials into 3D structures creates a cost-effective and efficient 3D graphene adsorbent with nano-porous channels. The graphene silica sand composite, boasting a thickness of 9 cm, achieved an impressive 82.4% removal rate, while the carbonate sand composite with 9 cm thick achieved an astonishing 99% removal rate due to its high specific surface area and porous structure. Among the utilized adsorbents, the 3D graphene carbonate sand composite, boasting a lower thickness of 4.5 cm and featuring an ingenious multilayered graphene coating and nanoporous channels, displayed a high efficiency of 96.4% in removing copper (II) ions, making it the most effective among all the studied adsorbents. The significant results pave the way for the development of economically viable, highly efficient, and environmentally friendly adsorbents, representing a major stride in combating copper contamination.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
6.50%
发文量
806
审稿时长
10.8 months
期刊介绍: International Journal of Environmental Science and Technology (IJEST) is an international scholarly refereed research journal which aims to promote the theory and practice of environmental science and technology, innovation, engineering and management. A broad outline of the journal''s scope includes: peer reviewed original research articles, case and technical reports, reviews and analyses papers, short communications and notes to the editor, in interdisciplinary information on the practice and status of research in environmental science and technology, both natural and man made. The main aspects of research areas include, but are not exclusive to; environmental chemistry and biology, environments pollution control and abatement technology, transport and fate of pollutants in the environment, concentrations and dispersion of wastes in air, water, and soil, point and non-point sources pollution, heavy metals and organic compounds in the environment, atmospheric pollutants and trace gases, solid and hazardous waste management; soil biodegradation and bioremediation of contaminated sites; environmental impact assessment, industrial ecology, ecological and human risk assessment; improved energy management and auditing efficiency and environmental standards and criteria.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信