具有共线和非共线自旋的非常规反铁磁体的自旋磁化

IF 6.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Lun-Hui Hu, Song-Bo Zhang
{"title":"具有共线和非共线自旋的非常规反铁磁体的自旋磁化","authors":"Lun-Hui Hu,&nbsp;Song-Bo Zhang","doi":"10.1007/s11433-024-2567-6","DOIUrl":null,"url":null,"abstract":"<div><p>Unconventional antiferromagnets (AFMs) with non-relativistic spin-splitting, such as the recently discovered altermagnet, have recently gained significant interest due to their potential for novel quantum phenomena and spintronic applications. The compensated magnetization in unconventional AFMs is protected by spin-space symmetries. In this work, we explore the symmetry-breaking effects and identify three distinct mechanisms for inducing net spin magnetizations in unconventional AFMs with collinear or non-collinear spins: (1) finite size effect, (2) extrinsic spin canting effect, and (3) irradiation with circularly polarized light. We show that the induced spin magnetizations are controllable and manifest as diverse intriguing phenomena. For the finite size system, the confined direction of a two-dimensional AM creates quantum-well-like subbands that determine the spin magnetization. This effect can be experimentally probed by measuring the spin density of states and the spin-polarization of Andreev-bound states within planar Josephson junctions. In the case of spin canting effect, it leads to peculiar anisotropic and non-monotonic behaviors in the superconducting proximity effect. Lastly, with circularly polarized light, spin magnetization is driven by the polarized light and the chirality of non-collinear magnetic order, thus offering a direct means of detecting the chirality of magnetic order in real materials. Our findings provide valuable insight into understanding and probing the spin magnetization in unconventional AFM materials.</p></div>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":"68 4","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin magnetization in unconventional antiferromagnets with collinear and non-collinear spins\",\"authors\":\"Lun-Hui Hu,&nbsp;Song-Bo Zhang\",\"doi\":\"10.1007/s11433-024-2567-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Unconventional antiferromagnets (AFMs) with non-relativistic spin-splitting, such as the recently discovered altermagnet, have recently gained significant interest due to their potential for novel quantum phenomena and spintronic applications. The compensated magnetization in unconventional AFMs is protected by spin-space symmetries. In this work, we explore the symmetry-breaking effects and identify three distinct mechanisms for inducing net spin magnetizations in unconventional AFMs with collinear or non-collinear spins: (1) finite size effect, (2) extrinsic spin canting effect, and (3) irradiation with circularly polarized light. We show that the induced spin magnetizations are controllable and manifest as diverse intriguing phenomena. For the finite size system, the confined direction of a two-dimensional AM creates quantum-well-like subbands that determine the spin magnetization. This effect can be experimentally probed by measuring the spin density of states and the spin-polarization of Andreev-bound states within planar Josephson junctions. In the case of spin canting effect, it leads to peculiar anisotropic and non-monotonic behaviors in the superconducting proximity effect. Lastly, with circularly polarized light, spin magnetization is driven by the polarized light and the chirality of non-collinear magnetic order, thus offering a direct means of detecting the chirality of magnetic order in real materials. Our findings provide valuable insight into understanding and probing the spin magnetization in unconventional AFM materials.</p></div>\",\"PeriodicalId\":774,\"journal\":{\"name\":\"Science China Physics, Mechanics & Astronomy\",\"volume\":\"68 4\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Physics, Mechanics & Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11433-024-2567-6\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11433-024-2567-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有非相对论性自旋分裂的非常规反铁磁体(AFMs),如最近发现的交替磁体,由于其在新量子现象和自旋电子应用方面的潜力,最近获得了极大的兴趣。非常规原子力显微镜中的补偿磁化受到自旋-空间对称性的保护。在这项工作中,我们探索了对称破缺效应,并确定了在具有共线或非共线自旋的非常规原子力显微镜中诱导净自旋磁化的三种不同机制:(1)有限尺寸效应,(2)外在自旋倾斜效应,(3)圆偏振光照射。我们证明了诱导自旋磁化是可控的,并表现出各种有趣的现象。对于有限尺寸的系统,二维AM的受限方向产生了类似量子阱的子带,这些子带决定了自旋磁化。这种效应可以通过测量平面Josephson结中态的自旋密度和andreev束缚态的自旋极化来实验探测。在自旋倾斜效应的情况下,它导致超导邻近效应中特殊的各向异性和非单调行为。最后,在圆偏振光下,自旋磁化由偏振光和非共线磁序的手性驱动,从而为检测实际材料中磁序的手性提供了一种直接的手段。我们的发现为理解和探索非常规AFM材料的自旋磁化提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spin magnetization in unconventional antiferromagnets with collinear and non-collinear spins

Unconventional antiferromagnets (AFMs) with non-relativistic spin-splitting, such as the recently discovered altermagnet, have recently gained significant interest due to their potential for novel quantum phenomena and spintronic applications. The compensated magnetization in unconventional AFMs is protected by spin-space symmetries. In this work, we explore the symmetry-breaking effects and identify three distinct mechanisms for inducing net spin magnetizations in unconventional AFMs with collinear or non-collinear spins: (1) finite size effect, (2) extrinsic spin canting effect, and (3) irradiation with circularly polarized light. We show that the induced spin magnetizations are controllable and manifest as diverse intriguing phenomena. For the finite size system, the confined direction of a two-dimensional AM creates quantum-well-like subbands that determine the spin magnetization. This effect can be experimentally probed by measuring the spin density of states and the spin-polarization of Andreev-bound states within planar Josephson junctions. In the case of spin canting effect, it leads to peculiar anisotropic and non-monotonic behaviors in the superconducting proximity effect. Lastly, with circularly polarized light, spin magnetization is driven by the polarized light and the chirality of non-collinear magnetic order, thus offering a direct means of detecting the chirality of magnetic order in real materials. Our findings provide valuable insight into understanding and probing the spin magnetization in unconventional AFM materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Physics, Mechanics & Astronomy
Science China Physics, Mechanics & Astronomy PHYSICS, MULTIDISCIPLINARY-
CiteScore
10.30
自引率
6.20%
发文量
4047
审稿时长
3 months
期刊介绍: Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of physics, mechanics and astronomy. Brief reports present short reports in a timely manner of the latest important results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信