仿生ZnFe₂O _4纳米纤维光催化剂的光电化学应用:电解质的作用

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Mohd Faizal Md Nasir, Mohd Nur Ikhmal Salehmin, Mohamad Hafiz Mamat, Mohammad B. Kassim, Salman A. H. Alrokayan, Haseeb A. Khan, Tajamul Hussain, Mohamad Rusop Mahmood
{"title":"仿生ZnFe₂O _4纳米纤维光催化剂的光电化学应用:电解质的作用","authors":"Mohd Faizal Md Nasir,&nbsp;Mohd Nur Ikhmal Salehmin,&nbsp;Mohamad Hafiz Mamat,&nbsp;Mohammad B. Kassim,&nbsp;Salman A. H. Alrokayan,&nbsp;Haseeb A. Khan,&nbsp;Tajamul Hussain,&nbsp;Mohamad Rusop Mahmood","doi":"10.1007/s10854-025-14387-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a simple and effective bio-templated synthesis method for fabricating zinc ferrite (ZnFe₂O₄) nanofiber photoelectrodes, designed to enhance photoelectrochemical (PEC) activity across different electrolytes. Utilizing kapok fiber as a bio-template, a nanofibril-structured catalyst was synthesized and deposited onto fluorine-doped tin oxide (FTO) substrates via electrophoretic deposition, resulting in thin film photoelectrodes. Comprehensive analytical and spectroscopy techniques, including FESEM, EDX, XRD, ATR-FTIR, UV–Vis, BET, and XPS, confirmed the purity and physiochemical properties of the synthesized sample. PEC measurements reveal that the ZnFe₂O₄ nanofiber photoelectrode achieves significant current densities in different electrolytes, with KOH showing the highest performance followed by Na₂SO₄, Na₂SO₃, and NaOH, respectively, at 0.5 M and 0.7 V vs. Ag/AgCl. The preparation of the bio-mimetic ZnFe₂O₄ nanofiber photocatalyst proves to be a facile, cost-effective, and promising photoanode material for PEC applications, contributing significantly to the advancement of environmentally friendly and efficient energy conversion technologies.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"36 6","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bio-mimetic ZnFe₂O₄ nanofibril photocatalysts for photoelectrochemical applications: role of electrolyte\",\"authors\":\"Mohd Faizal Md Nasir,&nbsp;Mohd Nur Ikhmal Salehmin,&nbsp;Mohamad Hafiz Mamat,&nbsp;Mohammad B. Kassim,&nbsp;Salman A. H. Alrokayan,&nbsp;Haseeb A. Khan,&nbsp;Tajamul Hussain,&nbsp;Mohamad Rusop Mahmood\",\"doi\":\"10.1007/s10854-025-14387-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a simple and effective bio-templated synthesis method for fabricating zinc ferrite (ZnFe₂O₄) nanofiber photoelectrodes, designed to enhance photoelectrochemical (PEC) activity across different electrolytes. Utilizing kapok fiber as a bio-template, a nanofibril-structured catalyst was synthesized and deposited onto fluorine-doped tin oxide (FTO) substrates via electrophoretic deposition, resulting in thin film photoelectrodes. Comprehensive analytical and spectroscopy techniques, including FESEM, EDX, XRD, ATR-FTIR, UV–Vis, BET, and XPS, confirmed the purity and physiochemical properties of the synthesized sample. PEC measurements reveal that the ZnFe₂O₄ nanofiber photoelectrode achieves significant current densities in different electrolytes, with KOH showing the highest performance followed by Na₂SO₄, Na₂SO₃, and NaOH, respectively, at 0.5 M and 0.7 V vs. Ag/AgCl. The preparation of the bio-mimetic ZnFe₂O₄ nanofiber photocatalyst proves to be a facile, cost-effective, and promising photoanode material for PEC applications, contributing significantly to the advancement of environmentally friendly and efficient energy conversion technologies.</p></div>\",\"PeriodicalId\":646,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Electronics\",\"volume\":\"36 6\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10854-025-14387-w\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-025-14387-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种简单有效的生物模板合成方法来制备铁酸锌(ZnFe₂O₄)纳米纤维光电极,旨在提高不同电解质的光电化学(PEC)活性。以木棉纤维为生物模板,合成了一种纳米纤维结构的催化剂,并通过电泳沉积在氟掺杂氧化锡(FTO)衬底上,得到薄膜光电极。FESEM、EDX、XRD、ATR-FTIR、UV-Vis、BET、XPS等综合分析和光谱技术证实了合成样品的纯度和理化性质。PEC测试表明,ZnFe₂O₄纳米纤维光电极在不同的电解质中都能获得显著的电流密度,其中KOH表现出最高的性能,其次是Na₂SO₄、Na₂SO₃和NaOH,分别在0.5 M和0.7 V时相对于Ag/AgCl。仿生ZnFe₂O₄纳米纤维光催化剂的制备被证明是一种简便、经济、有前途的光阳极材料,可用于PEC的应用,对环境友好和高效的能量转换技术的发展做出重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bio-mimetic ZnFe₂O₄ nanofibril photocatalysts for photoelectrochemical applications: role of electrolyte

Bio-mimetic ZnFe₂O₄ nanofibril photocatalysts for photoelectrochemical applications: role of electrolyte

This study presents a simple and effective bio-templated synthesis method for fabricating zinc ferrite (ZnFe₂O₄) nanofiber photoelectrodes, designed to enhance photoelectrochemical (PEC) activity across different electrolytes. Utilizing kapok fiber as a bio-template, a nanofibril-structured catalyst was synthesized and deposited onto fluorine-doped tin oxide (FTO) substrates via electrophoretic deposition, resulting in thin film photoelectrodes. Comprehensive analytical and spectroscopy techniques, including FESEM, EDX, XRD, ATR-FTIR, UV–Vis, BET, and XPS, confirmed the purity and physiochemical properties of the synthesized sample. PEC measurements reveal that the ZnFe₂O₄ nanofiber photoelectrode achieves significant current densities in different electrolytes, with KOH showing the highest performance followed by Na₂SO₄, Na₂SO₃, and NaOH, respectively, at 0.5 M and 0.7 V vs. Ag/AgCl. The preparation of the bio-mimetic ZnFe₂O₄ nanofiber photocatalyst proves to be a facile, cost-effective, and promising photoanode material for PEC applications, contributing significantly to the advancement of environmentally friendly and efficient energy conversion technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信