IF 1.9 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Chunlei Wu , Nina Wang , Yan Zhao , Xue Dong , Wei Huang
{"title":"Enhancing coastal wind simulation in the WRF model: Updates in sea surface temperature and roughness length through dynamic boundary conditions","authors":"Chunlei Wu ,&nbsp;Nina Wang ,&nbsp;Yan Zhao ,&nbsp;Xue Dong ,&nbsp;Wei Huang","doi":"10.1016/j.dynatmoce.2025.101542","DOIUrl":null,"url":null,"abstract":"<div><div>This study develops a dynamic lateral boundary condition for the Weather Research and Forecasting (WRF) model by integrating updates to sea surface temperature (SST) and roughness length (Z₀). By incorporating an ocean model and roughness schemes, time-varying SST and Z₀ were employed to enhance wind simulations over coastal areas. The results demonstrate significant improvements in the accuracy of wind speed and direction simulations, with consistent error reduction across observations. Statistical metrics, including correlation coefficients, mean bias, and root mean square error, highlight these improvements and underscore the need for continuous refinement of boundary conditions to ensure reliable meteorological forecasts. The impact of SST and Z₀ updates is particularly notable under stable atmospheric stratification, where they reduce wind speeds near the sea surface and exhibit spatial and temporal variability, with coastal regions responding more strongly than offshore areas. Additionally, the concurrent application of Z₀ updates mitigates anomalies that might arise from SST updates alone, emphasizing the importance of integrating both parameters for balanced and robust simulations. Overall, this work provides critical insights into the role of boundary condition updates in advancing offshore wind simulations, contributing to more informed decision-making and improved efficiency in wind energy generation.</div></div>","PeriodicalId":50563,"journal":{"name":"Dynamics of Atmospheres and Oceans","volume":"110 ","pages":"Article 101542"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics of Atmospheres and Oceans","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037702652500017X","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过整合更新海面温度(SST)和粗糙度长度(Z₀),为天气研究和预报 (WRF)模式开发了一种动态横向边界条件。通过整合海洋模式和粗糙度方案,采用时变海表温度和 Z₀ 来增强沿海地区的风模拟。结果表明,风速和风向模拟的准确性明显提高,观测误差持续减少。包括相关系数、平均偏差和均方根误差在内的统计指标突出表明了这些改进,并强调需要不断完善边界条件,以确保气象预报的可靠性。在大气分层稳定的情况下,SST 和 Z₀ 更新的影响尤为显著,它们会降低海面附近的风速,并表现出时空变异性,沿海地区比近海地区反应更强烈。此外,Z₀更新的同时应用减轻了仅靠 SST 更新可能产生的异常,强调了整合这两个参数对平衡和稳健模拟的重要性。总之,这项工作为边界条件更新在推进海上风力模拟中的作用提供了重要见解,有助于做出更明智的决策和提高风能发电的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing coastal wind simulation in the WRF model: Updates in sea surface temperature and roughness length through dynamic boundary conditions
This study develops a dynamic lateral boundary condition for the Weather Research and Forecasting (WRF) model by integrating updates to sea surface temperature (SST) and roughness length (Z₀). By incorporating an ocean model and roughness schemes, time-varying SST and Z₀ were employed to enhance wind simulations over coastal areas. The results demonstrate significant improvements in the accuracy of wind speed and direction simulations, with consistent error reduction across observations. Statistical metrics, including correlation coefficients, mean bias, and root mean square error, highlight these improvements and underscore the need for continuous refinement of boundary conditions to ensure reliable meteorological forecasts. The impact of SST and Z₀ updates is particularly notable under stable atmospheric stratification, where they reduce wind speeds near the sea surface and exhibit spatial and temporal variability, with coastal regions responding more strongly than offshore areas. Additionally, the concurrent application of Z₀ updates mitigates anomalies that might arise from SST updates alone, emphasizing the importance of integrating both parameters for balanced and robust simulations. Overall, this work provides critical insights into the role of boundary condition updates in advancing offshore wind simulations, contributing to more informed decision-making and improved efficiency in wind energy generation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dynamics of Atmospheres and Oceans
Dynamics of Atmospheres and Oceans 地学-地球化学与地球物理
CiteScore
3.10
自引率
5.90%
发文量
43
审稿时长
>12 weeks
期刊介绍: Dynamics of Atmospheres and Oceans is an international journal for research related to the dynamical and physical processes governing atmospheres, oceans and climate. Authors are invited to submit articles, short contributions or scholarly reviews in the following areas: •Dynamic meteorology •Physical oceanography •Geophysical fluid dynamics •Climate variability and climate change •Atmosphere-ocean-biosphere-cryosphere interactions •Prediction and predictability •Scale interactions Papers of theoretical, computational, experimental and observational investigations are invited, particularly those that explore the fundamental nature - or bring together the interdisciplinary and multidisciplinary aspects - of dynamical and physical processes at all scales. Papers that explore air-sea interactions and the coupling between atmospheres, oceans, and other components of the climate system are particularly welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信