浮力对熔融楔上生物对流福克纳-斯坎麦克斯韦纳米流体流动的影响

Q1 Chemical Engineering
Rakesh Choudhary , Amit Parmar , Pramod Kumar , Qasem Al-Mdallal
{"title":"浮力对熔融楔上生物对流福克纳-斯坎麦克斯韦纳米流体流动的影响","authors":"Rakesh Choudhary ,&nbsp;Amit Parmar ,&nbsp;Pramod Kumar ,&nbsp;Qasem Al-Mdallal","doi":"10.1016/j.ijft.2025.101136","DOIUrl":null,"url":null,"abstract":"<div><div>This research investigates the intricate thermal dynamics of Maxwellian nanofluids interacting with a sloping, porous, and heat-conductive melting surface under the influence of magnetic fields. The thermal and hydrodynamic behavior of Maxwellian nanofluids plays a significant role in optimizing heat transfer applications in engineering and industrial processes. This study aims to examine the influence of buoyancy, bioconvection on the Falkner-Skan flow of Maxwellian nanofluids over a sloping, melting surface. The analysis assumes a porous and thermally conductive wedge surface subjected to a stable magnetic field and incorporates the effects of Brownian motion, thermophoresis, and gyrotactic microorganisms. To simplify the governing equations, similarity transformations are applied, converting the partial differential equations into a set of ordinary differential equations. The resulting equations are solved numerically using MATLAB's robust bvp4c solver, ensuring validation through comparison with existing literature. The study reveals that parameters such as the magnetic field strength, Deborah number, and melting surface characteristics significantly enhance flow behavior and boundary layer thickness, whereas parameters like Prandtl number and thermophoresis diminish temperature profiles. The findings underscore the critical interplay between magnetic and thermal parameters, providing insights for improving heat management in advanced technological systems. These results have practical implications for designing efficient thermal systems in industries ranging from chemical engineering to bio-nanomaterial production.</div></div>","PeriodicalId":36341,"journal":{"name":"International Journal of Thermofluids","volume":"26 ","pages":"Article 101136"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Buoyancy effects on falkner-skan maxwellian nanofluid flow with bioconvection over a melting wedge\",\"authors\":\"Rakesh Choudhary ,&nbsp;Amit Parmar ,&nbsp;Pramod Kumar ,&nbsp;Qasem Al-Mdallal\",\"doi\":\"10.1016/j.ijft.2025.101136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research investigates the intricate thermal dynamics of Maxwellian nanofluids interacting with a sloping, porous, and heat-conductive melting surface under the influence of magnetic fields. The thermal and hydrodynamic behavior of Maxwellian nanofluids plays a significant role in optimizing heat transfer applications in engineering and industrial processes. This study aims to examine the influence of buoyancy, bioconvection on the Falkner-Skan flow of Maxwellian nanofluids over a sloping, melting surface. The analysis assumes a porous and thermally conductive wedge surface subjected to a stable magnetic field and incorporates the effects of Brownian motion, thermophoresis, and gyrotactic microorganisms. To simplify the governing equations, similarity transformations are applied, converting the partial differential equations into a set of ordinary differential equations. The resulting equations are solved numerically using MATLAB's robust bvp4c solver, ensuring validation through comparison with existing literature. The study reveals that parameters such as the magnetic field strength, Deborah number, and melting surface characteristics significantly enhance flow behavior and boundary layer thickness, whereas parameters like Prandtl number and thermophoresis diminish temperature profiles. The findings underscore the critical interplay between magnetic and thermal parameters, providing insights for improving heat management in advanced technological systems. These results have practical implications for designing efficient thermal systems in industries ranging from chemical engineering to bio-nanomaterial production.</div></div>\",\"PeriodicalId\":36341,\"journal\":{\"name\":\"International Journal of Thermofluids\",\"volume\":\"26 \",\"pages\":\"Article 101136\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666202725000837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666202725000837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究研究了麦克斯韦纳米流体在磁场影响下与倾斜、多孔和导热熔融表面相互作用的复杂热动力学。麦克斯韦纳米流体的热学和流体力学行为在优化工程和工业过程中的传热应用中起着重要作用。本研究旨在研究浮力、生物对流对麦克斯韦纳米流体在倾斜融化表面上的福克纳-斯坎流动的影响。分析假设一个多孔的导热楔形表面受到稳定磁场的影响,并结合布朗运动,热泳动和回旋微生物的影响。为了简化控制方程,应用相似变换,将偏微分方程转化为一组常微分方程。利用MATLAB鲁棒的bvp4c求解器对所得方程进行数值求解,确保通过与现有文献的比较进行验证。研究表明,磁场强度、黛博拉数和熔体表面特征等参数显著提高了流动行为和边界层厚度,而普朗特数和热泳等参数则显著降低了温度分布。研究结果强调了磁性和热参数之间的关键相互作用,为改善先进技术系统的热管理提供了见解。这些结果对设计从化学工程到生物纳米材料生产等行业的高效热系统具有实际意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Buoyancy effects on falkner-skan maxwellian nanofluid flow with bioconvection over a melting wedge
This research investigates the intricate thermal dynamics of Maxwellian nanofluids interacting with a sloping, porous, and heat-conductive melting surface under the influence of magnetic fields. The thermal and hydrodynamic behavior of Maxwellian nanofluids plays a significant role in optimizing heat transfer applications in engineering and industrial processes. This study aims to examine the influence of buoyancy, bioconvection on the Falkner-Skan flow of Maxwellian nanofluids over a sloping, melting surface. The analysis assumes a porous and thermally conductive wedge surface subjected to a stable magnetic field and incorporates the effects of Brownian motion, thermophoresis, and gyrotactic microorganisms. To simplify the governing equations, similarity transformations are applied, converting the partial differential equations into a set of ordinary differential equations. The resulting equations are solved numerically using MATLAB's robust bvp4c solver, ensuring validation through comparison with existing literature. The study reveals that parameters such as the magnetic field strength, Deborah number, and melting surface characteristics significantly enhance flow behavior and boundary layer thickness, whereas parameters like Prandtl number and thermophoresis diminish temperature profiles. The findings underscore the critical interplay between magnetic and thermal parameters, providing insights for improving heat management in advanced technological systems. These results have practical implications for designing efficient thermal systems in industries ranging from chemical engineering to bio-nanomaterial production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Thermofluids
International Journal of Thermofluids Engineering-Mechanical Engineering
CiteScore
10.10
自引率
0.00%
发文量
111
审稿时长
66 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信