基于牛顿-遗传算法的骨折复位机器人正解算法

Jian Li , Xiangyan Zhang , Yadong Mo , Guang Yang , Yun Dai , Chengyu Lv , Ying Zhang , Shimin Wei
{"title":"基于牛顿-遗传算法的骨折复位机器人正解算法","authors":"Jian Li ,&nbsp;Xiangyan Zhang ,&nbsp;Yadong Mo ,&nbsp;Guang Yang ,&nbsp;Yun Dai ,&nbsp;Chengyu Lv ,&nbsp;Ying Zhang ,&nbsp;Shimin Wei","doi":"10.1016/j.birob.2025.100216","DOIUrl":null,"url":null,"abstract":"<div><div>The Fracture Reduction Robot (FRR) is a crucial component of robot-assisted fracture correction technology. However, long-term clinical experiments have identified significant challenges with the forward kinematics of the parallel FRR, notably slow computation speeds and low precision. To address these issues, this paper proposes a hybrid algorithm that integrates the Newton method with a genetic algorithm. This approach harnesses the rapid computation and high precision of the Newton method alongside the strong global convergence capabilities of the genetic algorithm. To comprehensively evaluate the performance of the proposed algorithm, comparisons are made against the analytical method and the Additional Sensor Algorithm (ASA) using identical computational examples. Additionally, iterative comparisons of iteration counts and precision are conducted between traditional numerical methods and the Newton-Genetic algorithm. Experimental results show that the Newton-Genetic algorithm achieves a balance between computation speed and precision, with an accuracy reaching the 10<span><math><mrow><msup><mrow></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mspace></mspace><mi>mm</mi></mrow></math></span> order of magnitude, effectively meeting the clinical requirements for fracture reduction robots in medical correction.</div></div>","PeriodicalId":100184,"journal":{"name":"Biomimetic Intelligence and Robotics","volume":"5 2","pages":"Article 100216"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forward solution algorithm of Fracture reduction robots based on Newton-Genetic algorithm\",\"authors\":\"Jian Li ,&nbsp;Xiangyan Zhang ,&nbsp;Yadong Mo ,&nbsp;Guang Yang ,&nbsp;Yun Dai ,&nbsp;Chengyu Lv ,&nbsp;Ying Zhang ,&nbsp;Shimin Wei\",\"doi\":\"10.1016/j.birob.2025.100216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Fracture Reduction Robot (FRR) is a crucial component of robot-assisted fracture correction technology. However, long-term clinical experiments have identified significant challenges with the forward kinematics of the parallel FRR, notably slow computation speeds and low precision. To address these issues, this paper proposes a hybrid algorithm that integrates the Newton method with a genetic algorithm. This approach harnesses the rapid computation and high precision of the Newton method alongside the strong global convergence capabilities of the genetic algorithm. To comprehensively evaluate the performance of the proposed algorithm, comparisons are made against the analytical method and the Additional Sensor Algorithm (ASA) using identical computational examples. Additionally, iterative comparisons of iteration counts and precision are conducted between traditional numerical methods and the Newton-Genetic algorithm. Experimental results show that the Newton-Genetic algorithm achieves a balance between computation speed and precision, with an accuracy reaching the 10<span><math><mrow><msup><mrow></mrow><mrow><mo>−</mo><mn>4</mn></mrow></msup><mspace></mspace><mi>mm</mi></mrow></math></span> order of magnitude, effectively meeting the clinical requirements for fracture reduction robots in medical correction.</div></div>\",\"PeriodicalId\":100184,\"journal\":{\"name\":\"Biomimetic Intelligence and Robotics\",\"volume\":\"5 2\",\"pages\":\"Article 100216\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetic Intelligence and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667379725000075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetic Intelligence and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667379725000075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

骨折复位机器人(FRR)是机器人辅助骨折矫正技术的重要组成部分。然而,长期的临床实验已经确定了并联FRR正运动学的重大挑战,特别是计算速度慢和精度低。为了解决这些问题,本文提出了一种将牛顿法与遗传算法相结合的混合算法。该方法利用了牛顿法的快速计算和高精度以及遗传算法的强全局收敛能力。为了全面评估所提出算法的性能,使用相同的计算示例与解析方法和附加传感器算法(ASA)进行了比较。此外,还对传统数值方法与牛顿遗传算法的迭代次数和精度进行了迭代比较。实验结果表明,牛顿-遗传算法实现了计算速度和精度的平衡,精度达到10−4mm数量级,有效满足医疗矫正中骨折复位机器人的临床需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Forward solution algorithm of Fracture reduction robots based on Newton-Genetic algorithm
The Fracture Reduction Robot (FRR) is a crucial component of robot-assisted fracture correction technology. However, long-term clinical experiments have identified significant challenges with the forward kinematics of the parallel FRR, notably slow computation speeds and low precision. To address these issues, this paper proposes a hybrid algorithm that integrates the Newton method with a genetic algorithm. This approach harnesses the rapid computation and high precision of the Newton method alongside the strong global convergence capabilities of the genetic algorithm. To comprehensively evaluate the performance of the proposed algorithm, comparisons are made against the analytical method and the Additional Sensor Algorithm (ASA) using identical computational examples. Additionally, iterative comparisons of iteration counts and precision are conducted between traditional numerical methods and the Newton-Genetic algorithm. Experimental results show that the Newton-Genetic algorithm achieves a balance between computation speed and precision, with an accuracy reaching the 104mm order of magnitude, effectively meeting the clinical requirements for fracture reduction robots in medical correction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信