福氏分枝杆菌ATCC 6842植物甾醇通过多基因修饰高效生产9α-羟基类固醇

IF 3.7 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Ruijie Zhang , Wen Sun , Suwan Han , Xiaoxuan Sun , Xinghui Zhai , Beiru He , Xianfeng Zhu , Baoguo Zhang
{"title":"福氏分枝杆菌ATCC 6842植物甾醇通过多基因修饰高效生产9α-羟基类固醇","authors":"Ruijie Zhang ,&nbsp;Wen Sun ,&nbsp;Suwan Han ,&nbsp;Xiaoxuan Sun ,&nbsp;Xinghui Zhai ,&nbsp;Beiru He ,&nbsp;Xianfeng Zhu ,&nbsp;Baoguo Zhang","doi":"10.1016/j.bej.2025.109689","DOIUrl":null,"url":null,"abstract":"<div><div>The steroid drug industry is increasingly utilizing microbial biotransformation, employing genetically modified mycobacteria to convert phytosterols into steroid intermediates, with an emphasis on improving yield and purity. This study enhances the production of 9α-hydroxy-4-androstene-3,17-dione (9-OH-AD), a vital C19 steroid intermediate for glucocorticoid synthesis, by genetically modifying <em>Mycobacterium fortuitum</em> ATCC 6842. The study involved the targeted disruption of five 3-ketosteroid-Δ<sup>1</sup>-dehydrogenase (<em>kstD</em>) genes to prevent Δ<sup>1</sup>-dehydrogenation. The purity of 9-OH-AD is initially low at 81.85 % due to two main by-products: 9,22-dihydroxy-23,24-bisnorchol-4-ene-3-one (9-OH-HP) and 9,24-dihydroxychol-4-en-3-one (9,24-DHC). To address this, the steroid aldolase (<em>sal</em>) gene was deleted to block the C22 metabolic pathway, which completely eliminated 9-OH-HP and increased the purity of 9-OH-AD to 88.19 %. To further reduce 9,24-DHC levels, acyl-CoA dehydrogenases ChsE1 and ChsE2 were overexpressed. The resulting strain, MFKS_<em>chsE1</em>-<em>chsE2</em>, achieved a high purity of 9-OH-AD at 94.96 %, with a molar yield of 87.17 % from 10 g/L phytosterols, and converted up to 30 g/L of phytosterols into 15.91 g/L of 9-OH-AD. This method effectively enhances both the production and purity of this important steroid intermediate.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"218 ","pages":"Article 109689"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient production of 9α-hydroxy-steroid from phytosterols in Mycobacterium fortuitum ATCC 6842 by modifying multiple genes\",\"authors\":\"Ruijie Zhang ,&nbsp;Wen Sun ,&nbsp;Suwan Han ,&nbsp;Xiaoxuan Sun ,&nbsp;Xinghui Zhai ,&nbsp;Beiru He ,&nbsp;Xianfeng Zhu ,&nbsp;Baoguo Zhang\",\"doi\":\"10.1016/j.bej.2025.109689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The steroid drug industry is increasingly utilizing microbial biotransformation, employing genetically modified mycobacteria to convert phytosterols into steroid intermediates, with an emphasis on improving yield and purity. This study enhances the production of 9α-hydroxy-4-androstene-3,17-dione (9-OH-AD), a vital C19 steroid intermediate for glucocorticoid synthesis, by genetically modifying <em>Mycobacterium fortuitum</em> ATCC 6842. The study involved the targeted disruption of five 3-ketosteroid-Δ<sup>1</sup>-dehydrogenase (<em>kstD</em>) genes to prevent Δ<sup>1</sup>-dehydrogenation. The purity of 9-OH-AD is initially low at 81.85 % due to two main by-products: 9,22-dihydroxy-23,24-bisnorchol-4-ene-3-one (9-OH-HP) and 9,24-dihydroxychol-4-en-3-one (9,24-DHC). To address this, the steroid aldolase (<em>sal</em>) gene was deleted to block the C22 metabolic pathway, which completely eliminated 9-OH-HP and increased the purity of 9-OH-AD to 88.19 %. To further reduce 9,24-DHC levels, acyl-CoA dehydrogenases ChsE1 and ChsE2 were overexpressed. The resulting strain, MFKS_<em>chsE1</em>-<em>chsE2</em>, achieved a high purity of 9-OH-AD at 94.96 %, with a molar yield of 87.17 % from 10 g/L phytosterols, and converted up to 30 g/L of phytosterols into 15.91 g/L of 9-OH-AD. This method effectively enhances both the production and purity of this important steroid intermediate.</div></div>\",\"PeriodicalId\":8766,\"journal\":{\"name\":\"Biochemical Engineering Journal\",\"volume\":\"218 \",\"pages\":\"Article 109689\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369703X25000622\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X25000622","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

类固醇药物行业越来越多地利用微生物生物转化,利用转基因分枝杆菌将植物甾醇转化为类固醇中间体,重点是提高产量和纯度。本研究通过基因修饰fortuitum分枝杆菌ATCC 6842,提高了9α-羟基-4-雄烯-3,17-二酮(9-OH-AD)的产量,9α-羟基-4-雄烯-3,17-二酮是糖皮质激素合成的重要C19类固醇中间体。该研究涉及靶向破坏5个3-酮类固醇-Δ1-dehydrogenase (kstD)基因以预防Δ1-dehydrogenation。由于两个主要副产物:9,22-二羟基-23,24-双去甲胆-4-烯-3-one (9- oh - hp)和9,24-二羟基胆-4-烯-3-one (9,24- dhc), 9- oh - ad的纯度最初较低,为81.85 %。为了解决这个问题,我们删除了类固醇醛缩酶(sal)基因来阻断C22代谢途径,完全消除了9-OH-HP,将9-OH-AD的纯度提高到88.19 %。为了进一步降低9,24- dhc水平,酰基辅酶a脱氢酶ChsE1和ChsE2过表达。得到的菌株MFKS_chsE1-chsE2纯度为94.96 %,10 g/L植物甾醇的摩尔产率为87.17 %,最高可将30 g/L植物甾醇转化为15.91 g/L 9-OH-AD。该方法有效地提高了这一重要类固醇中间体的产量和纯度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient production of 9α-hydroxy-steroid from phytosterols in Mycobacterium fortuitum ATCC 6842 by modifying multiple genes
The steroid drug industry is increasingly utilizing microbial biotransformation, employing genetically modified mycobacteria to convert phytosterols into steroid intermediates, with an emphasis on improving yield and purity. This study enhances the production of 9α-hydroxy-4-androstene-3,17-dione (9-OH-AD), a vital C19 steroid intermediate for glucocorticoid synthesis, by genetically modifying Mycobacterium fortuitum ATCC 6842. The study involved the targeted disruption of five 3-ketosteroid-Δ1-dehydrogenase (kstD) genes to prevent Δ1-dehydrogenation. The purity of 9-OH-AD is initially low at 81.85 % due to two main by-products: 9,22-dihydroxy-23,24-bisnorchol-4-ene-3-one (9-OH-HP) and 9,24-dihydroxychol-4-en-3-one (9,24-DHC). To address this, the steroid aldolase (sal) gene was deleted to block the C22 metabolic pathway, which completely eliminated 9-OH-HP and increased the purity of 9-OH-AD to 88.19 %. To further reduce 9,24-DHC levels, acyl-CoA dehydrogenases ChsE1 and ChsE2 were overexpressed. The resulting strain, MFKS_chsE1-chsE2, achieved a high purity of 9-OH-AD at 94.96 %, with a molar yield of 87.17 % from 10 g/L phytosterols, and converted up to 30 g/L of phytosterols into 15.91 g/L of 9-OH-AD. This method effectively enhances both the production and purity of this important steroid intermediate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Engineering Journal
Biochemical Engineering Journal 工程技术-工程:化工
CiteScore
7.10
自引率
5.10%
发文量
380
审稿时长
34 days
期刊介绍: The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology. The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields: Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics Biosensors and Biodevices including biofabrication and novel fuel cell development Bioseparations including scale-up and protein refolding/renaturation Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells Bioreactor Systems including characterization, optimization and scale-up Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis Protein Engineering including enzyme engineering and directed evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信