中国页岩气地质特征、资源潜力及发展方向

IF 8 Q1 ENERGY & FUELS
Xusheng GUO , Ruyue WANG , Baojian SHEN , Guanping WANG , Chengxiang WAN , Qianru WANG
{"title":"中国页岩气地质特征、资源潜力及发展方向","authors":"Xusheng GUO ,&nbsp;Ruyue WANG ,&nbsp;Baojian SHEN ,&nbsp;Guanping WANG ,&nbsp;Chengxiang WAN ,&nbsp;Qianru WANG","doi":"10.1016/S1876-3804(25)60002-4","DOIUrl":null,"url":null,"abstract":"<div><div>By reviewing the research progress and exploration practices of shale gas geology in China, analyzing and summarizing the geological characteristics, enrichment laws, and resource potential of different types of shale gas, the following understandings have been obtained: (1) Marine, transitional, and lacustrine shales in China are distributed from old to new in geological age, and the complexity of tectonic reworking and hydrocarbon generation evolution processes gradually decreases. (2) The sedimentary environment controls the type of source-reservoir configuration, which is the basis of “hydrocarbon generation and reservoir formation”. The types of source-reservoir configuration in marine and lacustrine shales are mainly source-reservoir integration, with occasional source-reservoir separation. The configuration types of transitional shale are mainly source-reservoir integration and source-reservoir symbiosis. (3) The resistance of rigid minerals to compression for pore preservation and the overpressure facilitate the enrichment of source-reservoir integrated shale gas. Good source reservoir coupling and preservation conditions are crucial for the shale gas enrichment of source-reservoir symbiosis and source-reservoir separation types. (4) Marine shale remains the main battlefield for increasing shale gas reserves and production in China, while transitional and lacustrine shales are expected to become important replacement areas. It is recommended to carry out the shale gas exploration at three levels: Accelerate the exploration of Silurian, Cambrian, and Permian marine shales in the Upper-Middle Yangtze region; make key exploration breakthroughs in ultra-deep marine shales of the Upper-Middle Yangtze region, the new Ordovician marine shale strata in the North China region, the transitional shales of the Carboniferous and Permian, as well as the Mesozoic lacustrine shale gas in basins such as Sichuan, Ordos and Songliao; explore and prepare for new shale gas exploration areas such as South China and Northwest China, providing technology and resource reserves for the sustainable development of shale gas in China.</div></div>","PeriodicalId":67426,"journal":{"name":"Petroleum Exploration and Development","volume":"52 1","pages":"Pages 17-32"},"PeriodicalIF":8.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geological characteristics, resource potential, and development direction of shale gas in China\",\"authors\":\"Xusheng GUO ,&nbsp;Ruyue WANG ,&nbsp;Baojian SHEN ,&nbsp;Guanping WANG ,&nbsp;Chengxiang WAN ,&nbsp;Qianru WANG\",\"doi\":\"10.1016/S1876-3804(25)60002-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>By reviewing the research progress and exploration practices of shale gas geology in China, analyzing and summarizing the geological characteristics, enrichment laws, and resource potential of different types of shale gas, the following understandings have been obtained: (1) Marine, transitional, and lacustrine shales in China are distributed from old to new in geological age, and the complexity of tectonic reworking and hydrocarbon generation evolution processes gradually decreases. (2) The sedimentary environment controls the type of source-reservoir configuration, which is the basis of “hydrocarbon generation and reservoir formation”. The types of source-reservoir configuration in marine and lacustrine shales are mainly source-reservoir integration, with occasional source-reservoir separation. The configuration types of transitional shale are mainly source-reservoir integration and source-reservoir symbiosis. (3) The resistance of rigid minerals to compression for pore preservation and the overpressure facilitate the enrichment of source-reservoir integrated shale gas. Good source reservoir coupling and preservation conditions are crucial for the shale gas enrichment of source-reservoir symbiosis and source-reservoir separation types. (4) Marine shale remains the main battlefield for increasing shale gas reserves and production in China, while transitional and lacustrine shales are expected to become important replacement areas. It is recommended to carry out the shale gas exploration at three levels: Accelerate the exploration of Silurian, Cambrian, and Permian marine shales in the Upper-Middle Yangtze region; make key exploration breakthroughs in ultra-deep marine shales of the Upper-Middle Yangtze region, the new Ordovician marine shale strata in the North China region, the transitional shales of the Carboniferous and Permian, as well as the Mesozoic lacustrine shale gas in basins such as Sichuan, Ordos and Songliao; explore and prepare for new shale gas exploration areas such as South China and Northwest China, providing technology and resource reserves for the sustainable development of shale gas in China.</div></div>\",\"PeriodicalId\":67426,\"journal\":{\"name\":\"Petroleum Exploration and Development\",\"volume\":\"52 1\",\"pages\":\"Pages 17-32\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Exploration and Development\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876380425600024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Exploration and Development","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876380425600024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

通过回顾中国页岩气地质研究进展和勘探实践,分析总结了不同类型页岩气的地质特征、富集规律和资源潜力,得出以下认识:(1)中国海相、过渡型和湖相页岩在地质时代呈由老到新分布,构造改造和生烃演化过程的复杂性逐渐降低;(2)沉积环境控制着生储构型类型,是“生烃成藏”的基础。海相和湖相页岩的源储配置类型以源储一体化为主,偶有源储分离。过渡型页岩构型类型主要为源储一体化和源储共生。(3)刚性矿物抗压缩保存孔隙和超压有利于源储一体页岩气富集。良好的生储耦合和保存条件是形成源储共生和源储分离型页岩气富集的关键。④海相页岩仍是中国增加页岩气储量和产量的主战场,过渡性页岩和湖相页岩有望成为重要的替代区域。建议分三个层次开展页岩气勘探:加快扬子中上地区志留系、寒武系和二叠系海相页岩勘探;在中上扬子地区超深层海相页岩、华北地区奥陶系海相页岩新地层、石炭系和二叠系过渡性页岩以及四川、鄂尔多斯、松辽等盆地中生代湖相页岩气勘探方面取得重点突破;勘探准备华南、西北等页岩气新勘探区,为中国页岩气可持续发展提供技术和资源储备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geological characteristics, resource potential, and development direction of shale gas in China
By reviewing the research progress and exploration practices of shale gas geology in China, analyzing and summarizing the geological characteristics, enrichment laws, and resource potential of different types of shale gas, the following understandings have been obtained: (1) Marine, transitional, and lacustrine shales in China are distributed from old to new in geological age, and the complexity of tectonic reworking and hydrocarbon generation evolution processes gradually decreases. (2) The sedimentary environment controls the type of source-reservoir configuration, which is the basis of “hydrocarbon generation and reservoir formation”. The types of source-reservoir configuration in marine and lacustrine shales are mainly source-reservoir integration, with occasional source-reservoir separation. The configuration types of transitional shale are mainly source-reservoir integration and source-reservoir symbiosis. (3) The resistance of rigid minerals to compression for pore preservation and the overpressure facilitate the enrichment of source-reservoir integrated shale gas. Good source reservoir coupling and preservation conditions are crucial for the shale gas enrichment of source-reservoir symbiosis and source-reservoir separation types. (4) Marine shale remains the main battlefield for increasing shale gas reserves and production in China, while transitional and lacustrine shales are expected to become important replacement areas. It is recommended to carry out the shale gas exploration at three levels: Accelerate the exploration of Silurian, Cambrian, and Permian marine shales in the Upper-Middle Yangtze region; make key exploration breakthroughs in ultra-deep marine shales of the Upper-Middle Yangtze region, the new Ordovician marine shale strata in the North China region, the transitional shales of the Carboniferous and Permian, as well as the Mesozoic lacustrine shale gas in basins such as Sichuan, Ordos and Songliao; explore and prepare for new shale gas exploration areas such as South China and Northwest China, providing technology and resource reserves for the sustainable development of shale gas in China.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
473
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信