基于KL展开和平移过程理论的多变量非平稳非高斯风速模拟新方法

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL
Fengbo Wu , Yu Wu , Ning Zhao
{"title":"基于KL展开和平移过程理论的多变量非平稳非高斯风速模拟新方法","authors":"Fengbo Wu ,&nbsp;Yu Wu ,&nbsp;Ning Zhao","doi":"10.1016/j.strusafe.2025.102584","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate simulation of multivariate non-stationary non-Gaussian wind speed is the premise of evaluating the response of nonlinear structures. The methods based on Karhunen-Loève (KL) expansion and translation process method are extensively applied to predict non-stationary non-Gaussian simulation because it is easy for use and has relatively satisfactory simulation efficiency. However, these methods perform poorly in simulating the non-stationary strongly non-Gaussian process, especially the wind speed processes with highly skewed or bimodal distributions. This study comprehensively utilizes the KL expansion, the maximum entropy methods (MEM), and piecewise Hermite polynomial model (PHPM) to formulate a novel approach for simulating multivariate non-stationary non-Gaussian wind speed. In this method, the KL expansion is firstly used to generate the non-stationary Gaussian process. Then, a new strategy, the MEM is used to approximate the probability density function (PDF) of the target process which is then used to establish PHPM, is proposed to achieve the accurate and efficient simulation of non-stationary non-Gaussian process. The numerical results show that the proposed method has better simulation accuracy than traditional KL-based methods for non-stationary strongly non-Gaussian wind speed processes, especially the processes with highly skewed or bimodal distributions. Note that the proposed method can also be applied to simulate other non-Gaussian non-stationary excitations such as the wind pressure processes influenced by complex effects such as interference effect.</div></div>","PeriodicalId":21978,"journal":{"name":"Structural Safety","volume":"114 ","pages":"Article 102584"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel simulation method for the multivariate non-stationary non-Gaussian wind speed based on KL expansion and translation process theory\",\"authors\":\"Fengbo Wu ,&nbsp;Yu Wu ,&nbsp;Ning Zhao\",\"doi\":\"10.1016/j.strusafe.2025.102584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate simulation of multivariate non-stationary non-Gaussian wind speed is the premise of evaluating the response of nonlinear structures. The methods based on Karhunen-Loève (KL) expansion and translation process method are extensively applied to predict non-stationary non-Gaussian simulation because it is easy for use and has relatively satisfactory simulation efficiency. However, these methods perform poorly in simulating the non-stationary strongly non-Gaussian process, especially the wind speed processes with highly skewed or bimodal distributions. This study comprehensively utilizes the KL expansion, the maximum entropy methods (MEM), and piecewise Hermite polynomial model (PHPM) to formulate a novel approach for simulating multivariate non-stationary non-Gaussian wind speed. In this method, the KL expansion is firstly used to generate the non-stationary Gaussian process. Then, a new strategy, the MEM is used to approximate the probability density function (PDF) of the target process which is then used to establish PHPM, is proposed to achieve the accurate and efficient simulation of non-stationary non-Gaussian process. The numerical results show that the proposed method has better simulation accuracy than traditional KL-based methods for non-stationary strongly non-Gaussian wind speed processes, especially the processes with highly skewed or bimodal distributions. Note that the proposed method can also be applied to simulate other non-Gaussian non-stationary excitations such as the wind pressure processes influenced by complex effects such as interference effect.</div></div>\",\"PeriodicalId\":21978,\"journal\":{\"name\":\"Structural Safety\",\"volume\":\"114 \",\"pages\":\"Article 102584\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167473025000128\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167473025000128","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

准确模拟多变量非平稳非高斯风速是评价非线性结构响应的前提。基于karhunen - lo (KL)展开法和平移过程法的非平稳非高斯模拟预测方法因其易于使用和具有比较满意的模拟效率而被广泛应用于非平稳非高斯模拟预测。然而,这些方法在模拟非平稳的强非高斯过程中表现不佳,特别是在高度偏态或双峰分布的风速过程中。综合运用KL展开、最大熵方法(MEM)和分段Hermite多项式模型(PHPM),提出了一种模拟多变量非平稳非高斯风速的新方法。该方法首先利用KL展开生成非平稳高斯过程。然后,提出了一种新的策略,即利用MEM近似目标过程的概率密度函数(PDF),然后利用该函数建立PHPM,以实现对非平稳非高斯过程的精确和高效模拟。数值结果表明,对于非平稳强非高斯风速过程,特别是具有高度偏态或双峰分布的风速过程,所提出的方法比传统的基于kl的方法具有更好的模拟精度。注意,所提出的方法也可以应用于模拟其他非高斯非平稳激励,如受干扰效应等复杂效应影响的风压过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel simulation method for the multivariate non-stationary non-Gaussian wind speed based on KL expansion and translation process theory
Accurate simulation of multivariate non-stationary non-Gaussian wind speed is the premise of evaluating the response of nonlinear structures. The methods based on Karhunen-Loève (KL) expansion and translation process method are extensively applied to predict non-stationary non-Gaussian simulation because it is easy for use and has relatively satisfactory simulation efficiency. However, these methods perform poorly in simulating the non-stationary strongly non-Gaussian process, especially the wind speed processes with highly skewed or bimodal distributions. This study comprehensively utilizes the KL expansion, the maximum entropy methods (MEM), and piecewise Hermite polynomial model (PHPM) to formulate a novel approach for simulating multivariate non-stationary non-Gaussian wind speed. In this method, the KL expansion is firstly used to generate the non-stationary Gaussian process. Then, a new strategy, the MEM is used to approximate the probability density function (PDF) of the target process which is then used to establish PHPM, is proposed to achieve the accurate and efficient simulation of non-stationary non-Gaussian process. The numerical results show that the proposed method has better simulation accuracy than traditional KL-based methods for non-stationary strongly non-Gaussian wind speed processes, especially the processes with highly skewed or bimodal distributions. Note that the proposed method can also be applied to simulate other non-Gaussian non-stationary excitations such as the wind pressure processes influenced by complex effects such as interference effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Safety
Structural Safety 工程技术-工程:土木
CiteScore
11.30
自引率
8.60%
发文量
67
审稿时长
53 days
期刊介绍: Structural Safety is an international journal devoted to integrated risk assessment for a wide range of constructed facilities such as buildings, bridges, earth structures, offshore facilities, dams, lifelines and nuclear structural systems. Its purpose is to foster communication about risk and reliability among technical disciplines involved in design and construction, and to enhance the use of risk management in the constructed environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信