空心条件下衬管结构的力学性能

IF 7.4 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Kangjian Yang , Jianwei Zhang , Hongyuan Fang , Shaochun Ma , Lei Shi , Bin Li , Yizhuang Lou , Kuoyu Yang , Kejie Zhai
{"title":"空心条件下衬管结构的力学性能","authors":"Kangjian Yang ,&nbsp;Jianwei Zhang ,&nbsp;Hongyuan Fang ,&nbsp;Shaochun Ma ,&nbsp;Lei Shi ,&nbsp;Bin Li ,&nbsp;Yizhuang Lou ,&nbsp;Kuoyu Yang ,&nbsp;Kejie Zhai","doi":"10.1016/j.tust.2025.106484","DOIUrl":null,"url":null,"abstract":"<div><div>Voids still commonly exist around the pipeline after cured-in-place-pipe (CIPP) rehabilitation, posing a serious threat to the safe operation of the pipeline. However, current research primarily focuses on the improvement and performance evaluation of CIPP rehabilitation technology, with insufficient exploration of the impact of external voids on the pipe-liner structure. To address the aforementioned issues, this paper utilizes both full-scale tests and numerical simulations to investigate the mechanical performances of pipe-liner structures under void conditions by analyzing the effects of the void angle, depth and length on the stress state, differential displacement, relative rotation and bending moment of the pipe-liner structure. In addition, corresponding repair strategies were explored to provide practical solutions for addressing surrounding voids of the pipe. The results show that voids can reduce the interaction force between the pipe and the surrounding soil, alter the stress state of the pipe-liner structure, increase the vertical displacement and relative rotation of the pipe, and sharply increase the stress in the CIPP liner at pipe joints, with the effects becoming more pronounced as the void depth, angle, and length increase. Polymer grouting can effectively fill the voids around the pipeline, enhance the service performance of the pipeline, and provide an effective strategy for eliminating the effects of voids around the pipe.</div></div>","PeriodicalId":49414,"journal":{"name":"Tunnelling and Underground Space Technology","volume":"159 ","pages":"Article 106484"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanical performances of the pipe-liner structure under void conditions\",\"authors\":\"Kangjian Yang ,&nbsp;Jianwei Zhang ,&nbsp;Hongyuan Fang ,&nbsp;Shaochun Ma ,&nbsp;Lei Shi ,&nbsp;Bin Li ,&nbsp;Yizhuang Lou ,&nbsp;Kuoyu Yang ,&nbsp;Kejie Zhai\",\"doi\":\"10.1016/j.tust.2025.106484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Voids still commonly exist around the pipeline after cured-in-place-pipe (CIPP) rehabilitation, posing a serious threat to the safe operation of the pipeline. However, current research primarily focuses on the improvement and performance evaluation of CIPP rehabilitation technology, with insufficient exploration of the impact of external voids on the pipe-liner structure. To address the aforementioned issues, this paper utilizes both full-scale tests and numerical simulations to investigate the mechanical performances of pipe-liner structures under void conditions by analyzing the effects of the void angle, depth and length on the stress state, differential displacement, relative rotation and bending moment of the pipe-liner structure. In addition, corresponding repair strategies were explored to provide practical solutions for addressing surrounding voids of the pipe. The results show that voids can reduce the interaction force between the pipe and the surrounding soil, alter the stress state of the pipe-liner structure, increase the vertical displacement and relative rotation of the pipe, and sharply increase the stress in the CIPP liner at pipe joints, with the effects becoming more pronounced as the void depth, angle, and length increase. Polymer grouting can effectively fill the voids around the pipeline, enhance the service performance of the pipeline, and provide an effective strategy for eliminating the effects of voids around the pipe.</div></div>\",\"PeriodicalId\":49414,\"journal\":{\"name\":\"Tunnelling and Underground Space Technology\",\"volume\":\"159 \",\"pages\":\"Article 106484\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tunnelling and Underground Space Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0886779825001221\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tunnelling and Underground Space Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0886779825001221","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

管道就地固化修复后,管道周围普遍存在空隙,严重威胁管道的安全运行。然而,目前的研究主要集中在CIPP修复技术的改进和性能评价上,对外腔对管柱结构的影响研究不足。针对上述问题,本文采用全尺寸试验和数值模拟相结合的方法,通过分析空泡角度、空泡深度和空泡长度对衬管结构的应力状态、差位移、相对旋转和弯矩的影响,研究了空泡条件下衬管结构的力学性能。此外,还探讨了相应的修复策略,为解决管道周围的空洞提供了切实可行的解决方案。结果表明:孔洞减小了管道与周围土体的相互作用力,改变了管道-衬板结构的受力状态,增大了管道的垂直位移和相对旋转,使管道连接处CIPP衬板的应力急剧增加,且随着孔洞深度、孔洞角度和孔洞长度的增加,这种影响更为明显;聚合物灌浆可以有效填充管道周围的空隙,提高管道的使用性能,为消除管道周围空隙的影响提供了有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanical performances of the pipe-liner structure under void conditions
Voids still commonly exist around the pipeline after cured-in-place-pipe (CIPP) rehabilitation, posing a serious threat to the safe operation of the pipeline. However, current research primarily focuses on the improvement and performance evaluation of CIPP rehabilitation technology, with insufficient exploration of the impact of external voids on the pipe-liner structure. To address the aforementioned issues, this paper utilizes both full-scale tests and numerical simulations to investigate the mechanical performances of pipe-liner structures under void conditions by analyzing the effects of the void angle, depth and length on the stress state, differential displacement, relative rotation and bending moment of the pipe-liner structure. In addition, corresponding repair strategies were explored to provide practical solutions for addressing surrounding voids of the pipe. The results show that voids can reduce the interaction force between the pipe and the surrounding soil, alter the stress state of the pipe-liner structure, increase the vertical displacement and relative rotation of the pipe, and sharply increase the stress in the CIPP liner at pipe joints, with the effects becoming more pronounced as the void depth, angle, and length increase. Polymer grouting can effectively fill the voids around the pipeline, enhance the service performance of the pipeline, and provide an effective strategy for eliminating the effects of voids around the pipe.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tunnelling and Underground Space Technology
Tunnelling and Underground Space Technology 工程技术-工程:土木
CiteScore
11.90
自引率
18.80%
发文量
454
审稿时长
10.8 months
期刊介绍: Tunnelling and Underground Space Technology is an international journal which publishes authoritative articles encompassing the development of innovative uses of underground space and the results of high quality research into improved, more cost-effective techniques for the planning, geo-investigation, design, construction, operation and maintenance of underground and earth-sheltered structures. The journal provides an effective vehicle for the improved worldwide exchange of information on developments in underground technology - and the experience gained from its use - and is strongly committed to publishing papers on the interdisciplinary aspects of creating, planning, and regulating underground space.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信