含钌多元素结合剂硬质合金:组成、组成和相形成

IF 4.2 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Lena Maria Dorner , Raquel De Oro Calderon , Wolf-Dieter Schubert , Ralph Useldinger
{"title":"含钌多元素结合剂硬质合金:组成、组成和相形成","authors":"Lena Maria Dorner ,&nbsp;Raquel De Oro Calderon ,&nbsp;Wolf-Dieter Schubert ,&nbsp;Ralph Useldinger","doi":"10.1016/j.ijrmhm.2025.107102","DOIUrl":null,"url":null,"abstract":"<div><div>In spite of the rather high cost of Ru, CoRu binders are commonly used by the industry for the production of cemented carbides with performance demands at high temperatures. In a recent study it was shown that the solubility of W in Co-binders is considerably increased by the addition of Ru (both at low and at high carbon contents), which can significantly affect aspects such as grain growth inhibition, hardness, corrosion resistance and high temperature strength. The present work has extended the study to further binder chemistries: Co, Ni, CoNi and CoNiCr, which have been evaluated both with and without Ru additions. The results indicate that Ru additions increase the solubility of elements like W and Cr for all binder chemistries, both at low and at high carbon contents. The solubility of W is the lowest in the Cr-containing systems (CoNiCr and CoNiCrRu), however, due to the presence of Cr, the total amount of elements in solution is the highest from all binders. The results clearly demonstrate that the WC growth behaviour is significantly affected by the chemistry of the binder system, i.e. the chemical environment of the growing WC grains, which is strongly linked with the chemical activity of carbon in the system.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"129 ","pages":"Article 107102"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hardmetals with Ru-containing multi-element binders: Composition, constitution and phase formation\",\"authors\":\"Lena Maria Dorner ,&nbsp;Raquel De Oro Calderon ,&nbsp;Wolf-Dieter Schubert ,&nbsp;Ralph Useldinger\",\"doi\":\"10.1016/j.ijrmhm.2025.107102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In spite of the rather high cost of Ru, CoRu binders are commonly used by the industry for the production of cemented carbides with performance demands at high temperatures. In a recent study it was shown that the solubility of W in Co-binders is considerably increased by the addition of Ru (both at low and at high carbon contents), which can significantly affect aspects such as grain growth inhibition, hardness, corrosion resistance and high temperature strength. The present work has extended the study to further binder chemistries: Co, Ni, CoNi and CoNiCr, which have been evaluated both with and without Ru additions. The results indicate that Ru additions increase the solubility of elements like W and Cr for all binder chemistries, both at low and at high carbon contents. The solubility of W is the lowest in the Cr-containing systems (CoNiCr and CoNiCrRu), however, due to the presence of Cr, the total amount of elements in solution is the highest from all binders. The results clearly demonstrate that the WC growth behaviour is significantly affected by the chemistry of the binder system, i.e. the chemical environment of the growing WC grains, which is strongly linked with the chemical activity of carbon in the system.</div></div>\",\"PeriodicalId\":14216,\"journal\":{\"name\":\"International Journal of Refractory Metals & Hard Materials\",\"volume\":\"129 \",\"pages\":\"Article 107102\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refractory Metals & Hard Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263436825000678\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825000678","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

尽管Ru的成本相当高,但CoRu粘结剂通常被工业用于生产具有高温性能要求的硬质合金。最近的一项研究表明,加入Ru(无论是低碳含量还是高碳含量)都能显著提高W在co -粘结剂中的溶解度,这可以显著影响晶粒生长抑制、硬度、耐腐蚀性和高温强度等方面。目前的工作已经将研究扩展到进一步的粘结剂化学:Co, Ni, CoNi和CoNiCr,在添加和不添加Ru的情况下对它们进行了评估。结果表明,在低碳和高碳条件下,Ru的加入增加了W和Cr等元素在所有粘结剂化学中的溶解度。W在含Cr体系(CoNiCr和CoNiCrRu)中的溶解度最低,然而,由于Cr的存在,溶液中元素的总量是所有粘合剂中最高的。结果清楚地表明,WC的生长行为受粘结剂体系的化学性质(即WC颗粒生长的化学环境)的显著影响,这与体系中碳的化学活性密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hardmetals with Ru-containing multi-element binders: Composition, constitution and phase formation
In spite of the rather high cost of Ru, CoRu binders are commonly used by the industry for the production of cemented carbides with performance demands at high temperatures. In a recent study it was shown that the solubility of W in Co-binders is considerably increased by the addition of Ru (both at low and at high carbon contents), which can significantly affect aspects such as grain growth inhibition, hardness, corrosion resistance and high temperature strength. The present work has extended the study to further binder chemistries: Co, Ni, CoNi and CoNiCr, which have been evaluated both with and without Ru additions. The results indicate that Ru additions increase the solubility of elements like W and Cr for all binder chemistries, both at low and at high carbon contents. The solubility of W is the lowest in the Cr-containing systems (CoNiCr and CoNiCrRu), however, due to the presence of Cr, the total amount of elements in solution is the highest from all binders. The results clearly demonstrate that the WC growth behaviour is significantly affected by the chemistry of the binder system, i.e. the chemical environment of the growing WC grains, which is strongly linked with the chemical activity of carbon in the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
13.90%
发文量
236
审稿时长
35 days
期刊介绍: The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信