Hao Wang , Mengjiao Li , Rui Ren , Zhennan Gao , Lingna Meng , Ziyi Li , Chuanai Cao
{"title":"Preparation of sodium alginate antibacterial porous composite pads embedded with centrifugally spun nanofibers by freeze-drying and recasting for active food packaging","authors":"Hao Wang , Mengjiao Li , Rui Ren , Zhennan Gao , Lingna Meng , Ziyi Li , Chuanai Cao","doi":"10.1016/j.carbpol.2025.123430","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, nanofibers composed of ethyl cellulose (EC)/polyethylene oxide (PEO) impregnated with tea polyphenol (TP) were fabricated by the centrifugal spinning method. Subsequently, these nanofibers were incorporated into sodium alginate (SA) to generate porous composite pads with varying fiber contents. The porous composite pads were comprehensively characterized. The findings indicate that the nanofiber structure of the porous composite pads is maintained, the porosity of the porous composite pads ranges from 16 % to 28 %, the water vapor transfer rate decreases as the fiber addition increases, and the thermal stability improves. Additionally, the pads demonstrated enhanced slow-release characteristics, and the cumulative TP release reached 70 % to 81.44 % within 120 h. All the porous composite pads could effectively inhibit the growth of <em>Staphylococcus aureus</em> and <em>Escherichia coli</em>, and the inhibition rates of the two bacteria were 99.69 % and 99.54 % respectively, highlighting their potential application in active food packaging.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"355 ","pages":"Article 123430"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725002115","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Preparation of sodium alginate antibacterial porous composite pads embedded with centrifugally spun nanofibers by freeze-drying and recasting for active food packaging
In this study, nanofibers composed of ethyl cellulose (EC)/polyethylene oxide (PEO) impregnated with tea polyphenol (TP) were fabricated by the centrifugal spinning method. Subsequently, these nanofibers were incorporated into sodium alginate (SA) to generate porous composite pads with varying fiber contents. The porous composite pads were comprehensively characterized. The findings indicate that the nanofiber structure of the porous composite pads is maintained, the porosity of the porous composite pads ranges from 16 % to 28 %, the water vapor transfer rate decreases as the fiber addition increases, and the thermal stability improves. Additionally, the pads demonstrated enhanced slow-release characteristics, and the cumulative TP release reached 70 % to 81.44 % within 120 h. All the porous composite pads could effectively inhibit the growth of Staphylococcus aureus and Escherichia coli, and the inhibition rates of the two bacteria were 99.69 % and 99.54 % respectively, highlighting their potential application in active food packaging.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.