基于准范德华界面工程的共享硫的三维ZnSe和二维MoSe 2的序贯多晶外延

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Suhyun Kim, Saeyoung Oh, Seung Jae Kwak, Gichang Noh, Minhyuk Choi, Jaehyun Lee, Yuseok Kim, Min-gyu Kim, Tae Soo Kim, Min-kyung Jo, Won Bo Lee, Jinkyoung Yoo, Young Joon Hong, Seungwoo Song, Joon Young Kwak, YongJoo Kim, Hu Young Jeong, Kibum Kang
{"title":"基于准范德华界面工程的共享硫的三维ZnSe和二维MoSe 2的序贯多晶外延","authors":"Suhyun Kim, Saeyoung Oh, Seung Jae Kwak, Gichang Noh, Minhyuk Choi, Jaehyun Lee, Yuseok Kim, Min-gyu Kim, Tae Soo Kim, Min-kyung Jo, Won Bo Lee, Jinkyoung Yoo, Young Joon Hong, Seungwoo Song, Joon Young Kwak, YongJoo Kim, Hu Young Jeong, Kibum Kang","doi":"10.1126/sciadv.ads4573","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) materials are emerging as a promising platform for epitaxial growth, largely free from the constraints of lattice constant and thermal expansion coefficient mismatches. Among them, transition metal dichalcogenides (TMDs), known for their superior electrical properties, are ideal for ultrathin semiconductor applications. Their unique epitaxial characteristics enable seamless integration with 3D materials, facilitating the development of gate stacks and heterojunction devices. In this regard, developing a process for growing high-quality 3D epitaxial materials before and after the growth of 2D TMDs and understanding the 2D/3D interface are crucial. This study demonstrates the sequential growth of fully epitaxial ZnSe/MoSe <jats:sub>2</jats:sub> /ZnSe heterostructures using metal-organic chemical vapor deposition. ZnSe and MoSe <jats:sub>2</jats:sub> , sharing chalcogen elements, enable large-area quasi van der Waals epitaxy with sharp interfaces without intermediate phase. Multiscale analysis involving transmission electron microscopy and density functional theory calculation reveals lattice commensurability, van der Waals gaps, termination, and interfacial reconstruction. Understanding these interactions is crucial for advancing multidimensional integration of 2D and 3D materials.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"65 1","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequential multidimensional heteroepitaxy of chalcogen-sharing 3D ZnSe and 2D MoSe 2 with quasi van der Waals interface engineering\",\"authors\":\"Suhyun Kim, Saeyoung Oh, Seung Jae Kwak, Gichang Noh, Minhyuk Choi, Jaehyun Lee, Yuseok Kim, Min-gyu Kim, Tae Soo Kim, Min-kyung Jo, Won Bo Lee, Jinkyoung Yoo, Young Joon Hong, Seungwoo Song, Joon Young Kwak, YongJoo Kim, Hu Young Jeong, Kibum Kang\",\"doi\":\"10.1126/sciadv.ads4573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional (2D) materials are emerging as a promising platform for epitaxial growth, largely free from the constraints of lattice constant and thermal expansion coefficient mismatches. Among them, transition metal dichalcogenides (TMDs), known for their superior electrical properties, are ideal for ultrathin semiconductor applications. Their unique epitaxial characteristics enable seamless integration with 3D materials, facilitating the development of gate stacks and heterojunction devices. In this regard, developing a process for growing high-quality 3D epitaxial materials before and after the growth of 2D TMDs and understanding the 2D/3D interface are crucial. This study demonstrates the sequential growth of fully epitaxial ZnSe/MoSe <jats:sub>2</jats:sub> /ZnSe heterostructures using metal-organic chemical vapor deposition. ZnSe and MoSe <jats:sub>2</jats:sub> , sharing chalcogen elements, enable large-area quasi van der Waals epitaxy with sharp interfaces without intermediate phase. Multiscale analysis involving transmission electron microscopy and density functional theory calculation reveals lattice commensurability, van der Waals gaps, termination, and interfacial reconstruction. Understanding these interactions is crucial for advancing multidimensional integration of 2D and 3D materials.\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1126/sciadv.ads4573\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.ads4573","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)材料在很大程度上不受晶格常数和热膨胀系数不匹配的限制,正在成为一个有前途的外延生长平台。其中,过渡金属二硫族化合物(TMDs)以其优越的电性能而闻名,是超薄半导体应用的理想选择。其独特的外延特性使其能够与3D材料无缝集成,促进栅极堆栈和异质结器件的开发。在这方面,开发一种在2D tmd生长前后生长高质量3D外延材料的工艺以及了解2D/3D界面至关重要。本研究利用金属-有机化学气相沉积技术,实现了ZnSe/MoSe 2 /ZnSe全外延异质结构的顺序生长。ZnSe和mose2具有相同的硫元素,可以实现无中间相的大面积准范德华外延。包括透射电子显微镜和密度泛函理论计算在内的多尺度分析揭示了晶格通约性、范德华间隙、终止和界面重建。理解这些相互作用对于推进二维和三维材料的多维整合至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequential multidimensional heteroepitaxy of chalcogen-sharing 3D ZnSe and 2D MoSe 2 with quasi van der Waals interface engineering
Two-dimensional (2D) materials are emerging as a promising platform for epitaxial growth, largely free from the constraints of lattice constant and thermal expansion coefficient mismatches. Among them, transition metal dichalcogenides (TMDs), known for their superior electrical properties, are ideal for ultrathin semiconductor applications. Their unique epitaxial characteristics enable seamless integration with 3D materials, facilitating the development of gate stacks and heterojunction devices. In this regard, developing a process for growing high-quality 3D epitaxial materials before and after the growth of 2D TMDs and understanding the 2D/3D interface are crucial. This study demonstrates the sequential growth of fully epitaxial ZnSe/MoSe 2 /ZnSe heterostructures using metal-organic chemical vapor deposition. ZnSe and MoSe 2 , sharing chalcogen elements, enable large-area quasi van der Waals epitaxy with sharp interfaces without intermediate phase. Multiscale analysis involving transmission electron microscopy and density functional theory calculation reveals lattice commensurability, van der Waals gaps, termination, and interfacial reconstruction. Understanding these interactions is crucial for advancing multidimensional integration of 2D and 3D materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信