Vincent Dufour-Décieux, Philipp Rehner, Johannes Schilling, Elias Moubarak, Joachim Gross, André Bardow
求助PDF
{"title":"经典密度泛函理论是预测多孔材料吸附性能的一种快速准确的方法","authors":"Vincent Dufour-Décieux, Philipp Rehner, Johannes Schilling, Elias Moubarak, Joachim Gross, André Bardow","doi":"10.1002/aic.18779","DOIUrl":null,"url":null,"abstract":"Physical adsorption is crucial in many industrial processes, prompting researchers to develop new materials for energy-efficient processes. Porous adsorbents are particularly promising due to their design flexibility, and computational screening has accelerated the search for optimal materials. Recently, classical density functional theory (cDFT) has emerged as a faster screening alternative to state-of-the-art computational methods. However, its predictions have not been extensively validated, especially for materials involving strong Coulombic interactions. This article validates cDFT by calculating adsorption properties for over 500 Metal-Organic Frameworks with three adsorbates <span data-altimg=\"/cms/asset/2b4ac214-7081-4b58-89b7-95daa2eeb1ba/aic18779-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"24\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/aic18779-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,3\" data-semantic-content=\"0\" data-semantic- data-semantic-role=\"startpunct\" data-semantic-speech=\"left parenthesis CH Subscript 4 Baseline\" data-semantic-type=\"punctuated\"><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"4\" data-semantic-role=\"openfence\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\"1,2\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"text\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mrow size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00011541:media:aic18779:aic18779-math-0001\" display=\"inline\" location=\"graphic/aic18779-math-0001.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,3\" data-semantic-content=\"0\" data-semantic-role=\"startpunct\" data-semantic-speech=\"left parenthesis CH Subscript 4 Baseline\" data-semantic-type=\"punctuated\"><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"4\" data-semantic-role=\"openfence\" data-semantic-type=\"punctuation\" stretchy=\"false\">(</mo><msub data-semantic-=\"\" data-semantic-children=\"1,2\" data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mrow><mtext data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"text\">CH</mtext></mrow><mrow><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">4</mn></mrow></msub></mrow>$$ \\Big({\\mathrm{CH}}_4 $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, <span data-altimg=\"/cms/asset/846a7570-b292-4b44-9043-ea40c8d39788/aic18779-math-0002.png\"></span><mjx-container ctxtmenu_counter=\"25\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/aic18779-math-0002.png\"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper N Subscript 2\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"text\"><mjx-c></mjx-c></mjx-mtext></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mrow size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00011541:media:aic18779:aic18779-math-0002\" display=\"inline\" location=\"graphic/aic18779-math-0002.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper N Subscript 2\" data-semantic-type=\"subscript\"><mrow><mtext data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"text\">N</mtext></mrow><mrow><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></mrow></msub></mrow>$$ {\\mathrm{N}}_2 $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, <span data-altimg=\"/cms/asset/5256fe54-9950-4147-ba70-93dcf48e820e/aic18779-math-0003.png\"></span><mjx-container ctxtmenu_counter=\"26\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/aic18779-math-0003.png\"><mjx-semantics><mjx-mrow data-semantic-children=\"2,3\" data-semantic-content=\"3\" data-semantic- data-semantic-role=\"endpunct\" data-semantic-speech=\"CO Subscript 2 Baseline right parenthesis\" data-semantic-type=\"punctuated\"><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"text\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mrow size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\"punctuated\" data-semantic-parent=\"4\" data-semantic-role=\"closefence\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00011541:media:aic18779:aic18779-math-0003\" display=\"inline\" location=\"graphic/aic18779-math-0003.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"2,3\" data-semantic-content=\"3\" data-semantic-role=\"endpunct\" data-semantic-speech=\"CO Subscript 2 Baseline right parenthesis\" data-semantic-type=\"punctuated\"><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-parent=\"4\" data-semantic-role=\"unknown\" data-semantic-type=\"subscript\"><mrow><mtext data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"text\">CO</mtext></mrow><mrow><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></mrow></msub><mo data-semantic-=\"\" data-semantic-operator=\"punctuated\" data-semantic-parent=\"4\" data-semantic-role=\"closefence\" data-semantic-type=\"punctuation\" stretchy=\"false\">)</mo></mrow>$$ {\\mathrm{CO}}_2\\Big) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and comparing them to results from Grand Canonical Monte Carlo (GCMC) simulations. For <span data-altimg=\"/cms/asset/b375642d-78ef-451c-b8c6-5be72dafd446/aic18779-math-0004.png\"></span><mjx-container ctxtmenu_counter=\"27\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/aic18779-math-0004.png\"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"unknown\" data-semantic-speech=\"CO Subscript 2\" data-semantic-type=\"subscript\"><mjx-mrow><mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"text\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext></mjx-mrow><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mrow size=\"s\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:00011541:media:aic18779:aic18779-math-0004\" display=\"inline\" location=\"graphic/aic18779-math-0004.png\" overflow=\"scroll\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"unknown\" data-semantic-speech=\"CO Subscript 2\" data-semantic-type=\"subscript\"><mrow><mtext data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"text\">CO</mtext></mrow><mrow><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></mrow></msub></mrow>$$ {\\mathrm{CO}}_2 $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, accounting for Coulombic interactions is crucial for accurate predictions. Our findings show that cDFT closely replicates GCMC results while reducing computation time to a median of six minutes per material, making it a strong candidate for estimating adsorption properties in porous materials.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"62 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classical density functional theory as a fast and accurate method for adsorption property prediction of porous materials\",\"authors\":\"Vincent Dufour-Décieux, Philipp Rehner, Johannes Schilling, Elias Moubarak, Joachim Gross, André Bardow\",\"doi\":\"10.1002/aic.18779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical adsorption is crucial in many industrial processes, prompting researchers to develop new materials for energy-efficient processes. Porous adsorbents are particularly promising due to their design flexibility, and computational screening has accelerated the search for optimal materials. Recently, classical density functional theory (cDFT) has emerged as a faster screening alternative to state-of-the-art computational methods. However, its predictions have not been extensively validated, especially for materials involving strong Coulombic interactions. This article validates cDFT by calculating adsorption properties for over 500 Metal-Organic Frameworks with three adsorbates <span data-altimg=\\\"/cms/asset/2b4ac214-7081-4b58-89b7-95daa2eeb1ba/aic18779-math-0001.png\\\"></span><mjx-container ctxtmenu_counter=\\\"24\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/aic18779-math-0001.png\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"0,3\\\" data-semantic-content=\\\"0\\\" data-semantic- data-semantic-role=\\\"startpunct\\\" data-semantic-speech=\\\"left parenthesis CH Subscript 4 Baseline\\\" data-semantic-type=\\\"punctuated\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"openfence\\\" data-semantic-type=\\\"punctuation\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-msub data-semantic-children=\\\"1,2\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"text\\\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext></mjx-mrow><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mrow size=\\\"s\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00011541:media:aic18779:aic18779-math-0001\\\" display=\\\"inline\\\" location=\\\"graphic/aic18779-math-0001.png\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"0,3\\\" data-semantic-content=\\\"0\\\" data-semantic-role=\\\"startpunct\\\" data-semantic-speech=\\\"left parenthesis CH Subscript 4 Baseline\\\" data-semantic-type=\\\"punctuated\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"openfence\\\" data-semantic-type=\\\"punctuation\\\" stretchy=\\\"false\\\">(</mo><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"1,2\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mrow><mtext data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"text\\\">CH</mtext></mrow><mrow><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">4</mn></mrow></msub></mrow>$$ \\\\Big({\\\\mathrm{CH}}_4 $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, <span data-altimg=\\\"/cms/asset/846a7570-b292-4b44-9043-ea40c8d39788/aic18779-math-0002.png\\\"></span><mjx-container ctxtmenu_counter=\\\"25\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/aic18779-math-0002.png\\\"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper N Subscript 2\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"text\\\"><mjx-c></mjx-c></mjx-mtext></mjx-mrow><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mrow size=\\\"s\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00011541:media:aic18779:aic18779-math-0002\\\" display=\\\"inline\\\" location=\\\"graphic/aic18779-math-0002.png\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"upper N Subscript 2\\\" data-semantic-type=\\\"subscript\\\"><mrow><mtext data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"text\\\">N</mtext></mrow><mrow><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2</mn></mrow></msub></mrow>$$ {\\\\mathrm{N}}_2 $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, <span data-altimg=\\\"/cms/asset/5256fe54-9950-4147-ba70-93dcf48e820e/aic18779-math-0003.png\\\"></span><mjx-container ctxtmenu_counter=\\\"26\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/aic18779-math-0003.png\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"2,3\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-role=\\\"endpunct\\\" data-semantic-speech=\\\"CO Subscript 2 Baseline right parenthesis\\\" data-semantic-type=\\\"punctuated\\\"><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"text\\\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext></mjx-mrow><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mrow size=\\\"s\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"closefence\\\" data-semantic-type=\\\"punctuation\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00011541:media:aic18779:aic18779-math-0003\\\" display=\\\"inline\\\" location=\\\"graphic/aic18779-math-0003.png\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"2,3\\\" data-semantic-content=\\\"3\\\" data-semantic-role=\\\"endpunct\\\" data-semantic-speech=\\\"CO Subscript 2 Baseline right parenthesis\\\" data-semantic-type=\\\"punctuated\\\"><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"subscript\\\"><mrow><mtext data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"text\\\">CO</mtext></mrow><mrow><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2</mn></mrow></msub><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"punctuated\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"closefence\\\" data-semantic-type=\\\"punctuation\\\" stretchy=\\\"false\\\">)</mo></mrow>$$ {\\\\mathrm{CO}}_2\\\\Big) $$</annotation></semantics></math></mjx-assistive-mml></mjx-container> and comparing them to results from Grand Canonical Monte Carlo (GCMC) simulations. For <span data-altimg=\\\"/cms/asset/b375642d-78ef-451c-b8c6-5be72dafd446/aic18779-math-0004.png\\\"></span><mjx-container ctxtmenu_counter=\\\"27\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\" location=\\\"graphic/aic18779-math-0004.png\\\"><mjx-semantics><mjx-mrow><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"CO Subscript 2\\\" data-semantic-type=\\\"subscript\\\"><mjx-mrow><mjx-mtext data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"text\\\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mtext></mjx-mrow><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mrow size=\\\"s\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-script></mjx-msub></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"urn:x-wiley:00011541:media:aic18779:aic18779-math-0004\\\" display=\\\"inline\\\" location=\\\"graphic/aic18779-math-0004.png\\\" overflow=\\\"scroll\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-role=\\\"unknown\\\" data-semantic-speech=\\\"CO Subscript 2\\\" data-semantic-type=\\\"subscript\\\"><mrow><mtext data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"text\\\">CO</mtext></mrow><mrow><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2</mn></mrow></msub></mrow>$$ {\\\\mathrm{CO}}_2 $$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, accounting for Coulombic interactions is crucial for accurate predictions. Our findings show that cDFT closely replicates GCMC results while reducing computation time to a median of six minutes per material, making it a strong candidate for estimating adsorption properties in porous materials.\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/aic.18779\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18779","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
引用
批量引用