{"title":"选择策略之间的纹状体仲裁指导少射适应","authors":"Minsu Abel Yang, Min Whan Jung, Sang Wan Lee","doi":"10.1038/s41467-025-57049-5","DOIUrl":null,"url":null,"abstract":"<p>Animals often exhibit rapid action changes in context-switching environments. This study hypothesized that, compared to the expected outcome, an unexpected outcome leads to distinctly different action-selection strategies to guide rapid adaptation. We designed behavioral measures differentiating between trial-by-trial dynamics after expected and unexpected events. In various reversal learning data with different rodent species and task complexities, conventional learning models failed to replicate the choice behavior following an unexpected outcome. This discrepancy was resolved by the proposed model with two different decision variables contingent on outcome expectation: the <i>support-stay</i> and <i>conflict-shift</i> bias. Electrophysiological data analyses revealed that striatal neurons encode our model’s key variables. Furthermore, the inactivation of striatal direct and indirect pathways neutralizes the effect of past expected and unexpected outcomes, respectively, on the action-selection strategy following an unexpected outcome. Our study suggests unique roles of the striatum in arbitrating between different action selection strategies for few-shot adaptation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Striatal arbitration between choice strategies guides few-shot adaptation\",\"authors\":\"Minsu Abel Yang, Min Whan Jung, Sang Wan Lee\",\"doi\":\"10.1038/s41467-025-57049-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Animals often exhibit rapid action changes in context-switching environments. This study hypothesized that, compared to the expected outcome, an unexpected outcome leads to distinctly different action-selection strategies to guide rapid adaptation. We designed behavioral measures differentiating between trial-by-trial dynamics after expected and unexpected events. In various reversal learning data with different rodent species and task complexities, conventional learning models failed to replicate the choice behavior following an unexpected outcome. This discrepancy was resolved by the proposed model with two different decision variables contingent on outcome expectation: the <i>support-stay</i> and <i>conflict-shift</i> bias. Electrophysiological data analyses revealed that striatal neurons encode our model’s key variables. Furthermore, the inactivation of striatal direct and indirect pathways neutralizes the effect of past expected and unexpected outcomes, respectively, on the action-selection strategy following an unexpected outcome. Our study suggests unique roles of the striatum in arbitrating between different action selection strategies for few-shot adaptation.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-57049-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57049-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Striatal arbitration between choice strategies guides few-shot adaptation
Animals often exhibit rapid action changes in context-switching environments. This study hypothesized that, compared to the expected outcome, an unexpected outcome leads to distinctly different action-selection strategies to guide rapid adaptation. We designed behavioral measures differentiating between trial-by-trial dynamics after expected and unexpected events. In various reversal learning data with different rodent species and task complexities, conventional learning models failed to replicate the choice behavior following an unexpected outcome. This discrepancy was resolved by the proposed model with two different decision variables contingent on outcome expectation: the support-stay and conflict-shift bias. Electrophysiological data analyses revealed that striatal neurons encode our model’s key variables. Furthermore, the inactivation of striatal direct and indirect pathways neutralizes the effect of past expected and unexpected outcomes, respectively, on the action-selection strategy following an unexpected outcome. Our study suggests unique roles of the striatum in arbitrating between different action selection strategies for few-shot adaptation.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.