选择策略之间的纹状体仲裁指导少射适应

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Minsu Abel Yang, Min Whan Jung, Sang Wan Lee
{"title":"选择策略之间的纹状体仲裁指导少射适应","authors":"Minsu Abel Yang, Min Whan Jung, Sang Wan Lee","doi":"10.1038/s41467-025-57049-5","DOIUrl":null,"url":null,"abstract":"<p>Animals often exhibit rapid action changes in context-switching environments. This study hypothesized that, compared to the expected outcome, an unexpected outcome leads to distinctly different action-selection strategies to guide rapid adaptation. We designed behavioral measures differentiating between trial-by-trial dynamics after expected and unexpected events. In various reversal learning data with different rodent species and task complexities, conventional learning models failed to replicate the choice behavior following an unexpected outcome. This discrepancy was resolved by the proposed model with two different decision variables contingent on outcome expectation: the <i>support-stay</i> and <i>conflict-shift</i> bias. Electrophysiological data analyses revealed that striatal neurons encode our model’s key variables. Furthermore, the inactivation of striatal direct and indirect pathways neutralizes the effect of past expected and unexpected outcomes, respectively, on the action-selection strategy following an unexpected outcome. Our study suggests unique roles of the striatum in arbitrating between different action selection strategies for few-shot adaptation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Striatal arbitration between choice strategies guides few-shot adaptation\",\"authors\":\"Minsu Abel Yang, Min Whan Jung, Sang Wan Lee\",\"doi\":\"10.1038/s41467-025-57049-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Animals often exhibit rapid action changes in context-switching environments. This study hypothesized that, compared to the expected outcome, an unexpected outcome leads to distinctly different action-selection strategies to guide rapid adaptation. We designed behavioral measures differentiating between trial-by-trial dynamics after expected and unexpected events. In various reversal learning data with different rodent species and task complexities, conventional learning models failed to replicate the choice behavior following an unexpected outcome. This discrepancy was resolved by the proposed model with two different decision variables contingent on outcome expectation: the <i>support-stay</i> and <i>conflict-shift</i> bias. Electrophysiological data analyses revealed that striatal neurons encode our model’s key variables. Furthermore, the inactivation of striatal direct and indirect pathways neutralizes the effect of past expected and unexpected outcomes, respectively, on the action-selection strategy following an unexpected outcome. Our study suggests unique roles of the striatum in arbitrating between different action selection strategies for few-shot adaptation.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-57049-5\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57049-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

动物经常在上下文切换的环境中表现出快速的行动变化。本研究假设,与预期结果相比,意外结果会导致指导快速适应的明显不同的行动选择策略。我们设计了行为测量来区分预期事件和意外事件后的逐个试验动态。在不同啮齿类动物种类和任务复杂性的各种逆向学习数据中,传统学习模型无法复制意外结果后的选择行为。这一差异被提出的模型与两个不同的决策变量取决于结果预期:支持-停留和冲突-转移偏差。电生理数据分析显示纹状体神经元编码我们的模型的关键变量。此外,纹状体直接和间接通路的失活分别抵消了过去预期和意外结果对意外结果后行动选择策略的影响。我们的研究表明纹状体在不同的动作选择策略之间具有独特的仲裁作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Striatal arbitration between choice strategies guides few-shot adaptation

Striatal arbitration between choice strategies guides few-shot adaptation

Animals often exhibit rapid action changes in context-switching environments. This study hypothesized that, compared to the expected outcome, an unexpected outcome leads to distinctly different action-selection strategies to guide rapid adaptation. We designed behavioral measures differentiating between trial-by-trial dynamics after expected and unexpected events. In various reversal learning data with different rodent species and task complexities, conventional learning models failed to replicate the choice behavior following an unexpected outcome. This discrepancy was resolved by the proposed model with two different decision variables contingent on outcome expectation: the support-stay and conflict-shift bias. Electrophysiological data analyses revealed that striatal neurons encode our model’s key variables. Furthermore, the inactivation of striatal direct and indirect pathways neutralizes the effect of past expected and unexpected outcomes, respectively, on the action-selection strategy following an unexpected outcome. Our study suggests unique roles of the striatum in arbitrating between different action selection strategies for few-shot adaptation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信