{"title":"主动ris辅助系统的鲁棒传动设计","authors":"Jinho Yang;Hyeongtaek Lee;Junil Choi","doi":"10.1109/TVT.2025.3543874","DOIUrl":null,"url":null,"abstract":"Different from conventional passive reconfigurable intelligent surfaces (RISs), incident signals and thermal noise can be amplified at active RISs. By exploiting the amplifying capability of active RISs, noticeable performance improvement can be expected when precise channel state information (CSI) is available. Since obtaining perfect CSI related to an RIS is difficult in practice, a robust transmission design is proposed in this paper to tackle the channel uncertainty issue, which will be more severe for active RIS-aided systems. To account for the worst-case scenario, the minimum achievable rate of each user is derived under a statistical CSI error model. Subsequently, an optimization problem is formulated to maximize the sum of the minimum achievable rate. Since the objective function is non-concave, the formulated problem is transformed into a tractable lower bound maximization problem, which is solved using an alternating optimization method. Numerical results show that the proposed robust design outperforms a baseline scheme that only exploits estimated CSI.","PeriodicalId":13421,"journal":{"name":"IEEE Transactions on Vehicular Technology","volume":"74 7","pages":"11591-11596"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Transmission Design for Active RIS-Aided Systems\",\"authors\":\"Jinho Yang;Hyeongtaek Lee;Junil Choi\",\"doi\":\"10.1109/TVT.2025.3543874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Different from conventional passive reconfigurable intelligent surfaces (RISs), incident signals and thermal noise can be amplified at active RISs. By exploiting the amplifying capability of active RISs, noticeable performance improvement can be expected when precise channel state information (CSI) is available. Since obtaining perfect CSI related to an RIS is difficult in practice, a robust transmission design is proposed in this paper to tackle the channel uncertainty issue, which will be more severe for active RIS-aided systems. To account for the worst-case scenario, the minimum achievable rate of each user is derived under a statistical CSI error model. Subsequently, an optimization problem is formulated to maximize the sum of the minimum achievable rate. Since the objective function is non-concave, the formulated problem is transformed into a tractable lower bound maximization problem, which is solved using an alternating optimization method. Numerical results show that the proposed robust design outperforms a baseline scheme that only exploits estimated CSI.\",\"PeriodicalId\":13421,\"journal\":{\"name\":\"IEEE Transactions on Vehicular Technology\",\"volume\":\"74 7\",\"pages\":\"11591-11596\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Vehicular Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10896817/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Vehicular Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10896817/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Robust Transmission Design for Active RIS-Aided Systems
Different from conventional passive reconfigurable intelligent surfaces (RISs), incident signals and thermal noise can be amplified at active RISs. By exploiting the amplifying capability of active RISs, noticeable performance improvement can be expected when precise channel state information (CSI) is available. Since obtaining perfect CSI related to an RIS is difficult in practice, a robust transmission design is proposed in this paper to tackle the channel uncertainty issue, which will be more severe for active RIS-aided systems. To account for the worst-case scenario, the minimum achievable rate of each user is derived under a statistical CSI error model. Subsequently, an optimization problem is formulated to maximize the sum of the minimum achievable rate. Since the objective function is non-concave, the formulated problem is transformed into a tractable lower bound maximization problem, which is solved using an alternating optimization method. Numerical results show that the proposed robust design outperforms a baseline scheme that only exploits estimated CSI.
期刊介绍:
The scope of the Transactions is threefold (which was approved by the IEEE Periodicals Committee in 1967) and is published on the journal website as follows: Communications: The use of mobile radio on land, sea, and air, including cellular radio, two-way radio, and one-way radio, with applications to dispatch and control vehicles, mobile radiotelephone, radio paging, and status monitoring and reporting. Related areas include spectrum usage, component radio equipment such as cavities and antennas, compute control for radio systems, digital modulation and transmission techniques, mobile radio circuit design, radio propagation for vehicular communications, effects of ignition noise and radio frequency interference, and consideration of the vehicle as part of the radio operating environment. Transportation Systems: The use of electronic technology for the control of ground transportation systems including, but not limited to, traffic aid systems; traffic control systems; automatic vehicle identification, location, and monitoring systems; automated transport systems, with single and multiple vehicle control; and moving walkways or people-movers. Vehicular Electronics: The use of electronic or electrical components and systems for control, propulsion, or auxiliary functions, including but not limited to, electronic controls for engineer, drive train, convenience, safety, and other vehicle systems; sensors, actuators, and microprocessors for onboard use; electronic fuel control systems; vehicle electrical components and systems collision avoidance systems; electromagnetic compatibility in the vehicle environment; and electric vehicles and controls.