用热退火钴纳米线实现稳定锂阳极的分层同轴异质结构

IF 13.2 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Yang Xu, Gang Li, Kun Li, Jiangtao Hai, Haotian Weng, Hewei Yuan, Yanjie Su, Nantao Hu, Yafei Zhang
{"title":"用热退火钴纳米线实现稳定锂阳极的分层同轴异质结构","authors":"Yang Xu, Gang Li, Kun Li, Jiangtao Hai, Haotian Weng, Hewei Yuan, Yanjie Su, Nantao Hu, Yafei Zhang","doi":"10.1016/j.cej.2025.160761","DOIUrl":null,"url":null,"abstract":"Lithium metal batteries (LMBs) are regarded as ideal candidates for the next generation of batteries due to their exceptionally high energy density. However, the practical applications of LMBs face significant challenges, primarily due to dimensional changes and the growth of lithium (Li) dendrites during long-term cycling. Herein, hierarchical coaxial heterostructures based on lithiophilic Co<sub>3</sub>O<sub>4</sub> nanosheets anchored on Co nanowires (CoNWs) were constructed via <em>in-situ</em> thermal annealing process, enabling efficient thermal Li infusion for stable Li anodes. The design of the CoNWs@Co<sub>3</sub>O<sub>4</sub> coaxial heterostructure not only tunes the electronic structure and enhances electron and Li ion transfer via the heterostructure interface, but also improves the stability of the heterogeneous nanostructure via the <em>in-situ</em> growth of Co<sub>3</sub>O<sub>4</sub> nanosheets. The hierarchical coaxial heterostructure of CoNWs@Co<sub>3</sub>O<sub>4</sub> hybrids offers additional nucleation sites and abundant voids, which effectively accommodate the significant volumetric changes of Li and preserve the unique nano-micro structure. Various characterizations and density functional theory (DFT) simulations jointly validate that the unique hierarchical CoNWs@Co<sub>3</sub>O<sub>4</sub> coaxial heterostructures enhances the adsorption of Li<sup>+</sup> and inhibits the growth of Li dendrites. Benefiting from the distinctive hierarchical CoNWs@Co<sub>3</sub>O<sub>4</sub> coaxial heterostructure, the CoNWs@Co<sub>3</sub>O<sub>4</sub> symmetrical cell demonstrates a significantly extended and consistent lifespan of 2100 h at 1mA cm<sup>−2</sup> and 850 h at 5 mA cm<sup>−2</sup> with low overvoltage hysteresis. When paired with LiFePO<sub>4</sub> cathodes, the full cells exhibit excellent rate capacity, achieving a capacity retention of 88.5 % after 1000 cycles at 5C, holding promising potentials for practical applications. Overall, the design strategy for hierarchical coaxial heterostructures presented in this work offers new insight for the practical applications of LMBs in the future.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"21 1","pages":""},"PeriodicalIF":13.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical coaxial heterostructure enabled by thermal annealing cobalt nanowires for stable lithium anodes\",\"authors\":\"Yang Xu, Gang Li, Kun Li, Jiangtao Hai, Haotian Weng, Hewei Yuan, Yanjie Su, Nantao Hu, Yafei Zhang\",\"doi\":\"10.1016/j.cej.2025.160761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium metal batteries (LMBs) are regarded as ideal candidates for the next generation of batteries due to their exceptionally high energy density. However, the practical applications of LMBs face significant challenges, primarily due to dimensional changes and the growth of lithium (Li) dendrites during long-term cycling. Herein, hierarchical coaxial heterostructures based on lithiophilic Co<sub>3</sub>O<sub>4</sub> nanosheets anchored on Co nanowires (CoNWs) were constructed via <em>in-situ</em> thermal annealing process, enabling efficient thermal Li infusion for stable Li anodes. The design of the CoNWs@Co<sub>3</sub>O<sub>4</sub> coaxial heterostructure not only tunes the electronic structure and enhances electron and Li ion transfer via the heterostructure interface, but also improves the stability of the heterogeneous nanostructure via the <em>in-situ</em> growth of Co<sub>3</sub>O<sub>4</sub> nanosheets. The hierarchical coaxial heterostructure of CoNWs@Co<sub>3</sub>O<sub>4</sub> hybrids offers additional nucleation sites and abundant voids, which effectively accommodate the significant volumetric changes of Li and preserve the unique nano-micro structure. Various characterizations and density functional theory (DFT) simulations jointly validate that the unique hierarchical CoNWs@Co<sub>3</sub>O<sub>4</sub> coaxial heterostructures enhances the adsorption of Li<sup>+</sup> and inhibits the growth of Li dendrites. Benefiting from the distinctive hierarchical CoNWs@Co<sub>3</sub>O<sub>4</sub> coaxial heterostructure, the CoNWs@Co<sub>3</sub>O<sub>4</sub> symmetrical cell demonstrates a significantly extended and consistent lifespan of 2100 h at 1mA cm<sup>−2</sup> and 850 h at 5 mA cm<sup>−2</sup> with low overvoltage hysteresis. When paired with LiFePO<sub>4</sub> cathodes, the full cells exhibit excellent rate capacity, achieving a capacity retention of 88.5 % after 1000 cycles at 5C, holding promising potentials for practical applications. Overall, the design strategy for hierarchical coaxial heterostructures presented in this work offers new insight for the practical applications of LMBs in the future.\",\"PeriodicalId\":270,\"journal\":{\"name\":\"Chemical Engineering Journal\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cej.2025.160761\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2025.160761","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂金属电池(lmb)由于具有极高的能量密度,被认为是下一代电池的理想候选者。然而,lmb的实际应用面临着巨大的挑战,主要是由于尺寸变化和锂枝晶在长期循环过程中的生长。本文通过原位热退火工艺,构建了基于亲锂Co3O4纳米片锚定在Co纳米线(CoNWs)上的分层同轴异质结构,实现了稳定锂阳极的高效热锂注入。CoNWs@Co3O4同轴异质结构的设计不仅调整了电子结构,增强了电子和锂离子通过异质结构界面的转移,而且通过原位生长Co3O4纳米片提高了异质纳米结构的稳定性。CoNWs@Co3O4杂化体的分层同轴异质结构提供了额外的成核位点和丰富的空隙,有效地容纳了锂的显著体积变化,并保持了独特的纳米微观结构。各种表征和密度泛函理论(DFT)模拟共同验证了独特的层次CoNWs@Co3O4同轴异质结构增强了Li+的吸附并抑制了Li枝晶的生长。得益于独特的分层CoNWs@Co3O4同轴异质结构,CoNWs@Co3O4对称电池在1mA cm - 2和5 mA cm - 2下的寿命分别为2100 h和850 h,并具有低过电压滞后。当与LiFePO4阴极配对时,完整的电池表现出优异的倍率容量,在5C下循环1000次后,容量保持率达到88.5 %,具有良好的实际应用潜力。总体而言,本文提出的分层同轴异质结构设计策略为今后lmb的实际应用提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hierarchical coaxial heterostructure enabled by thermal annealing cobalt nanowires for stable lithium anodes

Hierarchical coaxial heterostructure enabled by thermal annealing cobalt nanowires for stable lithium anodes
Lithium metal batteries (LMBs) are regarded as ideal candidates for the next generation of batteries due to their exceptionally high energy density. However, the practical applications of LMBs face significant challenges, primarily due to dimensional changes and the growth of lithium (Li) dendrites during long-term cycling. Herein, hierarchical coaxial heterostructures based on lithiophilic Co3O4 nanosheets anchored on Co nanowires (CoNWs) were constructed via in-situ thermal annealing process, enabling efficient thermal Li infusion for stable Li anodes. The design of the CoNWs@Co3O4 coaxial heterostructure not only tunes the electronic structure and enhances electron and Li ion transfer via the heterostructure interface, but also improves the stability of the heterogeneous nanostructure via the in-situ growth of Co3O4 nanosheets. The hierarchical coaxial heterostructure of CoNWs@Co3O4 hybrids offers additional nucleation sites and abundant voids, which effectively accommodate the significant volumetric changes of Li and preserve the unique nano-micro structure. Various characterizations and density functional theory (DFT) simulations jointly validate that the unique hierarchical CoNWs@Co3O4 coaxial heterostructures enhances the adsorption of Li+ and inhibits the growth of Li dendrites. Benefiting from the distinctive hierarchical CoNWs@Co3O4 coaxial heterostructure, the CoNWs@Co3O4 symmetrical cell demonstrates a significantly extended and consistent lifespan of 2100 h at 1mA cm−2 and 850 h at 5 mA cm−2 with low overvoltage hysteresis. When paired with LiFePO4 cathodes, the full cells exhibit excellent rate capacity, achieving a capacity retention of 88.5 % after 1000 cycles at 5C, holding promising potentials for practical applications. Overall, the design strategy for hierarchical coaxial heterostructures presented in this work offers new insight for the practical applications of LMBs in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信