基于深度强化学习的自适应变长滑动窗口网络编码在fanet中的低延迟传输

IF 5.5 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Bo Song;Lei Xu;Xiulin Qiu;Yaqi Ke;Yuwang Yang
{"title":"基于深度强化学习的自适应变长滑动窗口网络编码在fanet中的低延迟传输","authors":"Bo Song;Lei Xu;Xiulin Qiu;Yaqi Ke;Yuwang Yang","doi":"10.1109/LWC.2025.3543921","DOIUrl":null,"url":null,"abstract":"Future flying ad-hoc networks (FANETs) need to address issues related to delay and channel interference while ensuring high data transmission accuracy. In this letter, we propose a proximal policy optimization (PPO)-based adaptive adjustment algorithm for sliding window-based network coding to mitigate channel contention and signal degradation caused by increased traffic load. We model the adaptive adjustment of the sliding window size as a Markov decision process, considering effective rate, node congestion, and total delay in the reward function. To further improve the algorithm’s performance, we enhance PPO with long short-term memory (LSTM) networks to process time-series data. Experimental results demonstrate that our method reduces delay, improves packet delivery rate and throughput compared with traditional sliding window network coding algorithms.","PeriodicalId":13343,"journal":{"name":"IEEE Wireless Communications Letters","volume":"14 5","pages":"1441-1445"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Variable Length Sliding Window Network Coding for Low Latency Transmission in FANETs via Deep Reinforcement Learning\",\"authors\":\"Bo Song;Lei Xu;Xiulin Qiu;Yaqi Ke;Yuwang Yang\",\"doi\":\"10.1109/LWC.2025.3543921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Future flying ad-hoc networks (FANETs) need to address issues related to delay and channel interference while ensuring high data transmission accuracy. In this letter, we propose a proximal policy optimization (PPO)-based adaptive adjustment algorithm for sliding window-based network coding to mitigate channel contention and signal degradation caused by increased traffic load. We model the adaptive adjustment of the sliding window size as a Markov decision process, considering effective rate, node congestion, and total delay in the reward function. To further improve the algorithm’s performance, we enhance PPO with long short-term memory (LSTM) networks to process time-series data. Experimental results demonstrate that our method reduces delay, improves packet delivery rate and throughput compared with traditional sliding window network coding algorithms.\",\"PeriodicalId\":13343,\"journal\":{\"name\":\"IEEE Wireless Communications Letters\",\"volume\":\"14 5\",\"pages\":\"1441-1445\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Wireless Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10896754/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Wireless Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10896754/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

未来的飞行自组织网络(fanet)需要在保证高数据传输精度的同时解决与延迟和信道干扰相关的问题。在这封信函中,我们提出了一种基于近端策略优化(PPO)的自适应调整算法,用于基于滑动窗口的网络编码,以减轻由于流量负载增加而引起的信道争用和信号退化。我们将滑动窗口大小的自适应调整建模为马尔可夫决策过程,考虑了奖励函数的有效性、节点拥塞和总延迟。为了进一步提高算法的性能,我们用长短期记忆(LSTM)网络增强PPO来处理时间序列数据。实验结果表明,与传统的滑动窗口网络编码算法相比,该方法降低了时延,提高了分组传输速率和吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Variable Length Sliding Window Network Coding for Low Latency Transmission in FANETs via Deep Reinforcement Learning
Future flying ad-hoc networks (FANETs) need to address issues related to delay and channel interference while ensuring high data transmission accuracy. In this letter, we propose a proximal policy optimization (PPO)-based adaptive adjustment algorithm for sliding window-based network coding to mitigate channel contention and signal degradation caused by increased traffic load. We model the adaptive adjustment of the sliding window size as a Markov decision process, considering effective rate, node congestion, and total delay in the reward function. To further improve the algorithm’s performance, we enhance PPO with long short-term memory (LSTM) networks to process time-series data. Experimental results demonstrate that our method reduces delay, improves packet delivery rate and throughput compared with traditional sliding window network coding algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Wireless Communications Letters
IEEE Wireless Communications Letters Engineering-Electrical and Electronic Engineering
CiteScore
12.30
自引率
6.30%
发文量
481
期刊介绍: IEEE Wireless Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of wireless communications. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of wireless communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信